Skip to content
Snippets Groups Projects
Commit eaf8d4d7 authored by Gregory Ashton's avatar Gregory Ashton
Browse files

Update example to a more relevant linear regression

parent 54abacb0
No related branches found
No related tags found
No related merge requests found
......@@ -10,43 +10,25 @@ import matplotlib.pyplot as plt
# A few simple setup steps
tupak.utils.setup_logger()
label = 'test'
label = 'linear-regression'
outdir = 'outdir'
# Here is minimum requirement for a Likelihood class to run linear regression
# with tupak. In this case, we setup a GaussianLikelihood, which needs to have
# a log_likelihood method. Note, in this case we make use of the `tupak`
# waveform_generator to make the signal (more on this later) But, one could
# make this work without the waveform generator.
# Here is minimum requirement for a GravitationalWaveTransient class needed to run tupak. In
# this case, we setup a GaussianGravitationalWaveTransient, which needs to have a
# log_likelihood and noise_log_likelihood method. Note, in this case we make
# use of the `tupak` waveform_generator to make the signal (more on this later)
# But, one could make this work without the waveform generator.
# Making simulated data
class GaussianLikelihood(tupak.likelihood.Likelihood):
def __init__(self, x, y, waveform_generator):
self.x = x
self.y = y
self.N = len(x)
self.waveform_generator = waveform_generator
self.parameters = waveform_generator.parameters
def log_likelihood(self):
sigma = 1
res = self.y - self.waveform_generator.time_domain_strain()
return -0.5 * (np.sum((res / sigma)**2)
+ self.N*np.log(2*np.pi*sigma**2))
def noise_log_likelihood(self):
sigma = 1
return -0.5 * (np.sum((self.y / sigma)**2)
+ self.N*np.log(2*np.pi*sigma**2))
# First, we define our signal model, in this case a simple linear function
def model(time, m, c):
return time * m + c
# Here we define our signal model, in this case a very basic trig. function
def model(time, A, P):
return A*np.sin(2*np.pi*time/P)
# Here we define the injection parameters which we make simulated data with
injection_parameters = dict(A=1.5, P=10)
# New we define the injection parameters which we make simulated data with
injection_parameters = dict(m=0.5, c=0.2)
# For this example, we'll use standard Gaussian noise
sigma = 1
......@@ -54,40 +36,78 @@ sigma = 1
# These lines of code generate the fake data. Note the ** just unpacks the
# contents of the injection_paramsters when calling the model function.
sampling_frequency = 10
time_duration = 100
time_duration = 10
time = np.arange(0, time_duration, 1/sampling_frequency)
N = len(time)
data = model(time, **injection_parameters) + np.random.normal(0, sigma, N)
# We quickly plot the data to check it looks sensible
fig, ax = plt.subplots()
ax.plot(time, data)
ax.plot(time, model(time, **injection_parameters), '--r')
ax.plot(time, data, 'o', label='data')
ax.plot(time, model(time, **injection_parameters), '--r', label='signal')
ax.set_xlabel('time')
ax.set_ylabel('y')
ax.legend()
fig.savefig('{}/data.png'.format(outdir))
# Parameter estimation: we now define a Gaussian Likelihood class relevant for
# our model.
class GaussianLikelihood(tupak.likelihood.Likelihood):
def __init__(self, x, y, sigma, waveform_generator):
"""
Parameters
----------
x, y: array_like
The data to analyse
sigma: float
The standard deviation of the noise
waveform_generator: `tupak.waveform_generator.WaveformGenerator`
An object which can generate the 'waveform', which in this case is
any arbitrary function
"""
self.x = x
self.y = y
self.sigma = sigma
self.N = len(x)
self.waveform_generator = waveform_generator
self.parameters = waveform_generator.parameters
def log_likelihood(self):
res = self.y - self.waveform_generator.time_domain_strain()
return -0.5 * (np.sum((res / self.sigma)**2)
+ self.N*np.log(2*np.pi*self.sigma**2))
def noise_log_likelihood(self):
return -0.5 * (np.sum((self.y / self.sigma)**2)
+ self.N*np.log(2*np.pi*self.sigma**2))
# Here, we make a `tupak` waveform_generator. In this case, of course, the
# name doesn't make so much sense. But essentially this is an objects that
# can generate a signal. We give it information on how to make the time series
# and the model() we wrote earlier.
waveform_generator = tupak.waveform_generator.WaveformGenerator(time_duration=time_duration,
sampling_frequency=sampling_frequency,
time_domain_source_model=model)
waveform_generator = tupak.waveform_generator.WaveformGenerator(
time_duration=time_duration, sampling_frequency=sampling_frequency,
time_domain_source_model=model)
# Now lets instantiate a version of out GravitationalWaveTransient, giving it the time, data
# and waveform_generator
likelihood = GaussianLikelihood(time, data, waveform_generator)
# Now lets instantiate a version of out GravitationalWaveTransient, giving it
# the time, data and waveform_generator
likelihood = GaussianLikelihood(time, data, sigma, waveform_generator)
# From hereon, the syntax is exactly equivalent to other tupak examples
# We make a prior
priors = {}
priors['A'] = tupak.prior.Uniform(0, 5, 'A')
priors['P'] = tupak.prior.Uniform(0, 20, 'P')
priors['m'] = tupak.prior.Uniform(0, 5, 'm')
priors['c'] = tupak.prior.Uniform(-2, 2, 'c')
# And run sampler
result = tupak.sampler.run_sampler(
likelihood=likelihood, priors=priors, sampler='dynesty', npoints=1000,
likelihood=likelihood, priors=priors, sampler='dynesty', npoints=500,
walks=10, injection_parameters=injection_parameters, outdir=outdir,
label=label, use_ratio=False)
result.plot_corner()
label=label, plot=True)
print(result)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment