Skip to content
Snippets Groups Projects
Commit eb15228d authored by Colm Talbot's avatar Colm Talbot
Browse files

update tutorial to use marginalised likelihood

parent 84a1ea9f
No related branches found
No related tags found
1 merge request!27Marginalisation
Pipeline #
......@@ -8,8 +8,10 @@ time_duration = 4.
sampling_frequency = 2048.
outdir = 'outdir'
injection_parameters = dict(mass_1=36., mass_2=29., a_1=0, a_2=0, tilt_1=0, tilt_2=0, phi_12=0, phi_jl=0,
luminosity_distance=2500., iota=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413,
np.random.seed(170809)
injection_parameters = dict(mass_1=36., mass_2=29., a_1=0.4, a_2=0, tilt_1=0, tilt_2=0, phi_12=0, phi_jl=0,
luminosity_distance=8000., iota=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413,
waveform_approximant='IMRPhenomPv2', reference_frequency=50., ra=1.375, dec=-1.2108)
# Create the waveform_generator using a LAL BinaryBlackHole source function
......@@ -25,18 +27,24 @@ IFOs = [peyote.detector.get_inteferometer_with_fake_noise_and_injection(
sampling_frequency=sampling_frequency, time_duration=time_duration, outdir=outdir)
for name in ['H1', 'L1', 'V1']]
# Set up likelihood
likelihood = peyote.likelihood.Likelihood(IFOs, waveform_generator)
# Set up prior
priors = dict()
# These parameters will not be sampled
for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'phase', 'psi', 'iota', 'ra', 'dec', 'geocent_time']:
for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'ra', 'dec', 'phase', 'geocent_time',
'mass_1', 'mass_2']:
priors[key] = injection_parameters[key]
priors['luminosity_distance'] = peyote.prior.PowerLaw(alpha=2, minimum=500, maximum=10000, name='luminosity_distance')
# priors['phase'] = peyote.prior.create_default_prior(name='phase')
# priors['mass_1'] = peyote.prior.Uniform(30, 50, name='mass_1')
# Set up likelihood
likelihood = peyote.likelihood.MarginalizedLikelihood(IFOs, waveform_generator, prior=priors,
distance_marginalization=False, phase_marginalization=False)
# likelihood = peyote.likelihood.Likelihood(IFOs, waveform_generator)
# Run sampler
result = peyote.sampler.run_sampler(likelihood=likelihood, priors=priors, sampler='dynesty',
label='BasicTutorial', use_ratio=True, npoints=500, verbose=True,
label='BasicTutorial', use_ratio=True, npoints=200, verbose=True,
injection_parameters=injection_parameters, outdir=outdir)
result.plot_corner()
result.plot_walks()
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment