Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bilby
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
lscsoft
bilby
Commits
ed7fc9a4
Commit
ed7fc9a4
authored
6 years ago
by
Colm Talbot
Browse files
Options
Downloads
Patches
Plain Diff
add some logic to prior probability and rescaling
parent
578fce7f
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
peyote/prior.py
+41
-18
41 additions, 18 deletions
peyote/prior.py
with
41 additions
and
18 deletions
peyote/prior.py
+
41
−
18
View file @
ed7fc9a4
...
...
@@ -23,11 +23,17 @@ class Prior(object):
def
rescale
(
self
,
val
):
"""
'
Rescale
'
a sample from the unit line element to the prior
, does nothing
.
'
Rescale
'
a sample from the unit line element to the prior.
This
maps to the inverse CDF
.
This
should be overwritten by each subclass
.
"""
return
val
return
None
@staticmethod
def
test_valid_for_rescaling
(
self
,
val
):
"""
Test if 0 < val < 1
"""
if
(
val
>
0
)
and
(
val
<
1
):
raise
ValueError
(
"
Number to be rescaled should be in [0, 1]
"
)
def
__repr__
(
self
):
prior_name
=
self
.
__class__
.
__name__
...
...
@@ -102,6 +108,7 @@ class Uniform(Prior):
self
.
support
=
maximum
-
minimum
def
rescale
(
self
,
val
):
Prior
.
test_valid_for_rescaling
(
val
)
return
self
.
minimum
+
val
*
self
.
support
def
prob
(
self
,
val
):
...
...
@@ -121,6 +128,7 @@ class DeltaFunction(Prior):
def
rescale
(
self
,
val
):
"""
Rescale everything to the peak with the correct shape.
"""
Prior
.
test_valid_for_rescaling
(
val
)
return
self
.
peak
*
val
**
0
def
prob
(
self
,
val
):
...
...
@@ -147,6 +155,7 @@ class PowerLaw(Prior):
This maps to the inverse CDF. This has been analytically solved for this case.
"""
Prior
.
test_valid_for_rescaling
(
val
)
if
self
.
alpha
==
-
1
:
return
self
.
minimum
*
np
.
exp
(
val
*
np
.
log
(
self
.
maximum
/
self
.
minimum
))
else
:
...
...
@@ -176,12 +185,16 @@ class Cosine(Prior):
This maps to the inverse CDF. This has been analytically solved for this case.
"""
Prior
.
test_valid_for_rescaling
(
val
)
return
np
.
arcsin
(
-
1
+
val
*
2
)
@staticmethod
def
prob
(
val
):
"""
Return the prior probability of val
"""
return
np
.
cos
(
val
)
/
2
"""
Return the prior probability of val, defined over [-pi/2, pi/2]
"""
if
(
val
>
-
np
.
pi
/
2
)
and
(
val
<
np
.
pi
/
2
):
return
np
.
cos
(
val
)
/
2
else
:
return
0
class
Sine
(
Prior
):
...
...
@@ -195,12 +208,16 @@ class Sine(Prior):
This maps to the inverse CDF. This has been analytically solved for this case.
"""
Prior
.
test_valid_for_rescaling
(
val
)
return
np
.
arccos
(
-
1
+
val
*
2
)
@staticmethod
def
prob
(
val
):
"""
Return the prior probability of val
"""
return
np
.
sin
(
val
)
/
2
"""
Return the prior probability of val, defined over [0, pi]
"""
if
(
val
>
0
)
and
(
val
<
np
.
pi
):
return
np
.
sin
(
val
)
/
2
else
:
return
0
class
Gaussian
(
Prior
):
...
...
@@ -218,6 +235,7 @@ class Gaussian(Prior):
This maps to the inverse CDF. This has been analytically solved for this case.
"""
Prior
.
test_valid_for_rescaling
(
val
)
return
self
.
mu
+
erfinv
(
2
*
val
-
1
)
*
2
**
0.5
*
self
.
sigma
def
prob
(
self
,
val
):
...
...
@@ -232,16 +250,16 @@ class TruncatedGaussian(Prior):
https://en.wikipedia.org/wiki/Truncated_normal_distribution
"""
def
__init__
(
self
,
mu
,
sigma
,
low
,
high
,
name
=
None
,
latex_label
=
None
):
def
__init__
(
self
,
mu
,
sigma
,
minimum
,
maximum
,
name
=
None
,
latex_label
=
None
):
"""
Power law with bounds and alpha, spectral index
"""
Prior
.
__init__
(
self
,
name
,
latex_label
)
self
.
mu
=
mu
self
.
sigma
=
sigma
self
.
low
=
low
self
.
high
=
high
self
.
minimum
=
minimum
self
.
maximum
=
maximum
self
.
normalisation
=
(
erf
((
self
.
high
-
self
.
mu
)
/
2
**
0.5
/
self
.
sigma
)
-
erf
(
(
self
.
low
-
self
.
mu
)
/
2
**
0.5
/
self
.
sigma
))
/
2
self
.
normalisation
=
(
erf
((
self
.
maximum
-
self
.
mu
)
/
2
**
0.5
/
self
.
sigma
)
-
erf
(
(
self
.
minimum
-
self
.
mu
)
/
2
**
0.5
/
self
.
sigma
))
/
2
def
rescale
(
self
,
val
):
"""
...
...
@@ -249,13 +267,17 @@ class TruncatedGaussian(Prior):
This maps to the inverse CDF. This has been analytically solved for this case.
"""
Prior
.
test_valid_for_rescaling
(
val
)
return
erfinv
(
2
*
val
*
self
.
normalisation
+
erf
(
(
self
.
low
-
self
.
mu
)
/
2
**
0.5
/
self
.
sigma
))
*
2
**
0.5
*
self
.
sigma
+
self
.
mu
(
self
.
minimum
-
self
.
mu
)
/
2
**
0.5
/
self
.
sigma
))
*
2
**
0.5
*
self
.
sigma
+
self
.
mu
def
prob
(
self
,
val
):
"""
Return the prior probability of val
"""
return
np
.
exp
(
-
(
self
.
mu
-
val
)
**
2
/
(
2
*
self
.
sigma
**
2
))
/
(
2
*
np
.
pi
)
**
0.5
/
self
.
sigma
/
self
.
normalisation
if
(
val
>
self
.
minimum
)
&
(
val
<
self
.
maximum
):
return
np
.
exp
(
-
(
self
.
mu
-
val
)
**
2
/
(
2
*
self
.
sigma
**
2
))
/
(
2
*
np
.
pi
)
**
0.5
/
self
.
sigma
/
self
.
normalisation
else
:
return
0
class
Interped
(
Prior
):
...
...
@@ -271,7 +293,7 @@ class Interped(Prior):
print
(
'
Supplied PDF is not normalised, normalising.
'
)
self
.
yy
/=
np
.
trapz
(
self
.
yy
,
self
.
xx
)
self
.
YY
=
cumtrapz
(
self
.
yy
,
self
.
xx
,
initial
=
0
)
self
.
probability_density
=
interp1d
(
x
=
self
.
xx
,
y
=
self
.
yy
,
bounds_error
=
False
,
fill_value
=
min
(
self
.
yy
)
)
self
.
probability_density
=
interp1d
(
x
=
self
.
xx
,
y
=
self
.
yy
,
bounds_error
=
False
,
fill_value
=
0
)
self
.
cumulative_distribution
=
interp1d
(
x
=
self
.
xx
,
y
=
self
.
YY
,
bounds_error
=
False
,
fill_value
=
0
)
self
.
invervse_cumulative_distribution
=
interp1d
(
x
=
self
.
YY
,
y
=
self
.
xx
,
bounds_error
=
False
,
fill_value
=
(
min
(
self
.
xx
),
max
(
self
.
xx
)))
...
...
@@ -280,13 +302,14 @@ class Interped(Prior):
"""
Return the prior probability of val
"""
return
self
.
probability_density
(
val
)
def
rescale
(
self
,
x
):
def
rescale
(
self
,
val
):
"""
'
Rescale
'
a sample from the unit line element to the prior.
This maps to the inverse CDF. This is done using interpolation.
"""
return
self
.
invervse_cumulative_distribution
(
x
)
Prior
.
test_valid_for_rescaling
(
val
)
return
self
.
invervse_cumulative_distribution
(
val
)
class
FromFile
(
Interped
):
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment