Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bilby
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
lscsoft
bilby
Commits
f3afa08b
Commit
f3afa08b
authored
6 years ago
by
Colm Talbot
Browse files
Options
Downloads
Patches
Plain Diff
make marginalised likelihood (with no marginalisation) default
parent
7ef8da5b
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
tupak/likelihood.py
+55
-63
55 additions, 63 deletions
tupak/likelihood.py
with
55 additions
and
63 deletions
tupak/likelihood.py
+
55
−
63
View file @
f3afa08b
...
...
@@ -4,52 +4,20 @@ try:
from
scipy.special
import
logsumexp
except
ImportError
:
from
scipy.misc
import
logsumexp
from
scipy.special
import
i0
,
i0e
from
scipy.special
import
i0e
from
scipy.interpolate
import
interp1d
import
tupak
import
logging
class
Likelihood
(
object
):
def
__init__
(
self
,
interferometers
,
waveform_generator
):
def
__init__
(
self
,
interferometers
,
waveform_generator
,
distance_marginalization
=
False
,
phase_marginalization
=
False
,
prior
=
None
):
# Likelihood.__init__(self, interferometers, waveform_generator)
self
.
interferometers
=
interferometers
self
.
waveform_generator
=
waveform_generator
def
noise_log_likelihood
(
self
):
log_l
=
0
for
interferometer
in
self
.
interferometers
:
log_l
-=
2.
/
self
.
waveform_generator
.
time_duration
*
np
.
sum
(
abs
(
interferometer
.
data
)
**
2
/
interferometer
.
power_spectral_density_array
)
return
log_l
.
real
def
log_likelihood
(
self
):
log_l
=
0
waveform_polarizations
=
self
.
waveform_generator
.
frequency_domain_strain
()
if
waveform_polarizations
is
None
:
return
np
.
nan_to_num
(
-
np
.
inf
)
for
interferometer
in
self
.
interferometers
:
log_l
+=
self
.
log_likelihood_interferometer
(
waveform_polarizations
,
interferometer
)
return
log_l
.
real
def
log_likelihood_interferometer
(
self
,
waveform_polarizations
,
interferometer
):
signal_ifo
=
interferometer
.
get_detector_response
(
waveform_polarizations
,
self
.
waveform_generator
.
parameters
)
log_l
=
-
2.
/
self
.
waveform_generator
.
time_duration
*
np
.
vdot
(
interferometer
.
data
-
signal_ifo
,
(
interferometer
.
data
-
signal_ifo
)
/
interferometer
.
power_spectral_density_array
)
return
log_l
.
real
def
log_likelihood_ratio
(
self
):
return
self
.
log_likelihood
()
-
self
.
noise_log_likelihood
()
class
MarginalizedLikelihood
(
Likelihood
):
def
__init__
(
self
,
interferometers
,
waveform_generator
,
distance_marginalization
=
False
,
phase_marginalization
=
False
,
time_marginalization
=
False
,
prior
=
None
):
Likelihood
.
__init__
(
self
,
interferometers
,
waveform_generator
)
self
.
distance_marginalization
=
distance_marginalization
self
.
phase_marginalization
=
phase_marginalization
self
.
time_marginalization
=
time_marginalization
self
.
prior
=
prior
if
self
.
distance_marginalization
:
...
...
@@ -64,29 +32,6 @@ class MarginalizedLikelihood(Likelihood):
self
.
setup_phase_marginalization
()
prior
[
'
psi
'
]
=
0
if
self
.
time_marginalization
:
logging
.
warning
(
'
Time marginalisation not yet implemented.
'
)
self
.
time_marginalization
=
False
def
setup_distance_marginalization
(
self
):
if
'
luminosity_distance
'
not
in
self
.
prior
.
keys
():
logging
.
info
(
'
No prior provided for distance, using default prior.
'
)
self
.
prior
[
'
luminosity_distance
'
]
=
tupak
.
prior
.
create_default_prior
(
'
luminosity_distance
'
)
self
.
distance_array
=
np
.
linspace
(
self
.
prior
[
'
luminosity_distance
'
].
minimum
,
self
.
prior
[
'
luminosity_distance
'
].
maximum
,
1e4
)
self
.
delta_distance
=
self
.
distance_array
[
1
]
-
self
.
distance_array
[
0
]
self
.
distance_prior_array
=
np
.
array
([
self
.
prior
[
'
luminosity_distance
'
].
prob
(
distance
)
for
distance
in
self
.
distance_array
])
def
setup_phase_marginalization
(
self
):
if
'
psi
'
not
in
self
.
prior
.
keys
()
or
not
isinstance
(
self
.
prior
[
'
psi
'
],
tupak
.
prior
.
Prior
):
logging
.
info
(
'
No prior provided for polarization, using default prior.
'
)
self
.
prior
[
'
psi
'
]
=
tupak
.
prior
.
create_default_prior
(
'
psi
'
)
self
.
bessel_function_interped
=
interp1d
(
np
.
linspace
(
0
,
1e6
,
1e5
),
np
.
log
([
i0e
(
snr
)
for
snr
in
np
.
linspace
(
0
,
1e6
,
1e5
)])
+
np
.
linspace
(
0
,
1e6
,
1e5
),
bounds_error
=
False
,
fill_value
=-
np
.
inf
)
def
noise_log_likelihood
(
self
):
log_l
=
0
for
interferometer
in
self
.
interferometers
:
...
...
@@ -101,10 +46,7 @@ class MarginalizedLikelihood(Likelihood):
if
waveform_polarizations
is
None
:
return
np
.
nan_to_num
(
-
np
.
inf
)
if
self
.
time_marginalization
:
signal_times_data
=
0
*
1j
else
:
matched_filter_snr_squared
=
0
matched_filter_snr_squared
=
0
optimal_snr_squared
=
0
for
interferometer
in
self
.
interferometers
:
...
...
@@ -142,4 +84,54 @@ class MarginalizedLikelihood(Likelihood):
def
log_likelihood
(
self
):
return
self
.
log_likelihood
()
+
self
.
noise_log_likelihood
()
def
setup_distance_marginalization
(
self
):
if
'
luminosity_distance
'
not
in
self
.
prior
.
keys
():
logging
.
info
(
'
No prior provided for distance, using default prior.
'
)
self
.
prior
[
'
luminosity_distance
'
]
=
tupak
.
prior
.
create_default_prior
(
'
luminosity_distance
'
)
self
.
distance_array
=
np
.
linspace
(
self
.
prior
[
'
luminosity_distance
'
].
minimum
,
self
.
prior
[
'
luminosity_distance
'
].
maximum
,
1e4
)
self
.
delta_distance
=
self
.
distance_array
[
1
]
-
self
.
distance_array
[
0
]
self
.
distance_prior_array
=
np
.
array
([
self
.
prior
[
'
luminosity_distance
'
].
prob
(
distance
)
for
distance
in
self
.
distance_array
])
def
setup_phase_marginalization
(
self
):
if
'
psi
'
not
in
self
.
prior
.
keys
()
or
not
isinstance
(
self
.
prior
[
'
psi
'
],
tupak
.
prior
.
Prior
):
logging
.
info
(
'
No prior provided for polarization, using default prior.
'
)
self
.
prior
[
'
psi
'
]
=
tupak
.
prior
.
create_default_prior
(
'
psi
'
)
self
.
bessel_function_interped
=
interp1d
(
np
.
linspace
(
0
,
1e6
,
1e5
),
np
.
log
([
i0e
(
snr
)
for
snr
in
np
.
linspace
(
0
,
1e6
,
1e5
)])
+
np
.
linspace
(
0
,
1e6
,
1e5
),
bounds_error
=
False
,
fill_value
=-
np
.
inf
)
class
BasicLikelihood
(
object
):
def
__init__
(
self
,
interferometers
,
waveform_generator
):
self
.
interferometers
=
interferometers
self
.
waveform_generator
=
waveform_generator
def
noise_log_likelihood
(
self
):
log_l
=
0
for
interferometer
in
self
.
interferometers
:
log_l
-=
2.
/
self
.
waveform_generator
.
time_duration
*
np
.
sum
(
abs
(
interferometer
.
data
)
**
2
/
interferometer
.
power_spectral_density_array
)
return
log_l
.
real
def
log_likelihood
(
self
):
log_l
=
0
waveform_polarizations
=
self
.
waveform_generator
.
frequency_domain_strain
()
if
waveform_polarizations
is
None
:
return
np
.
nan_to_num
(
-
np
.
inf
)
for
interferometer
in
self
.
interferometers
:
log_l
+=
self
.
log_likelihood_interferometer
(
waveform_polarizations
,
interferometer
)
return
log_l
.
real
def
log_likelihood_interferometer
(
self
,
waveform_polarizations
,
interferometer
):
signal_ifo
=
interferometer
.
get_detector_response
(
waveform_polarizations
,
self
.
waveform_generator
.
parameters
)
log_l
=
-
2.
/
self
.
waveform_generator
.
time_duration
*
np
.
vdot
(
interferometer
.
data
-
signal_ifo
,
(
interferometer
.
data
-
signal_ifo
)
/
interferometer
.
power_spectral_density_array
)
return
log_l
.
real
def
log_likelihood_ratio
(
self
):
return
self
.
log_likelihood
()
-
self
.
noise_log_likelihood
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment