Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bilby
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
lscsoft
bilby
Commits
fbf5a7c8
Commit
fbf5a7c8
authored
6 years ago
by
Gregory Ashton
Committed by
Moritz Huebner
6 years ago
Browse files
Options
Downloads
Patches
Plain Diff
Resolve "Add cacheing of marginalized luminosity-distance lookup table"
parent
a5c53004
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
bilby/gw/likelihood.py
+59
-2
59 additions, 2 deletions
bilby/gw/likelihood.py
with
59 additions
and
2 deletions
bilby/gw/likelihood.py
+
59
−
2
View file @
fbf5a7c8
from
__future__
import
division
from
__future__
import
division
import
os
import
json
import
json
import
numpy
as
np
import
numpy
as
np
...
@@ -297,10 +298,62 @@ class GravitationalWaveTransient(likelihood.Likelihood):
...
@@ -297,10 +298,62 @@ class GravitationalWaveTransient(likelihood.Likelihood):
self
.
_rho_mf_ref_array
,
self
.
_rho_opt_ref_array
,
self
.
_rho_mf_ref_array
,
self
.
_rho_opt_ref_array
,
self
.
_dist_margd_loglikelihood_array
)
self
.
_dist_margd_loglikelihood_array
)
@property
def
cached_lookup_table_filename
(
self
):
dmin
=
self
.
_distance_array
[
0
]
dmax
=
self
.
_distance_array
[
-
1
]
n
=
len
(
self
.
_distance_array
)
cached_lookup_table_filename
=
(
'
.distance_marginalization_lookup_dmin{}_dmax{}_n{}_v1.npy
'
.
format
(
dmin
,
dmax
,
n
))
return
cached_lookup_table_filename
@property
def
cached_lookup_table
(
self
):
"""
Reads in the cached lookup table
Returns
-------
cached_lookup_table: np.ndarray
Columns are _distance_array, distance_prior_array,
dist_marged_log_l_tc_array. This is only returned if the file
exists and the first two columns match the equivalent values
stored on disk.
"""
if
os
.
path
.
exists
(
self
.
cached_lookup_table_filename
):
loaded_file
=
np
.
load
(
self
.
cached_lookup_table_filename
)
if
self
.
_test_cached_lookup_table
(
loaded_file
):
return
loaded_file
else
:
return
None
@cached_lookup_table.setter
def
cached_lookup_table
(
self
,
lookup_table
):
np
.
save
(
self
.
cached_lookup_table_filename
,
lookup_table
)
def
_test_cached_lookup_table
(
self
,
lookup_table
):
cond_a
=
np
.
all
(
self
.
_distance_array
==
lookup_table
[
0
])
cond_b
=
np
.
all
(
self
.
distance_prior_array
==
lookup_table
[
1
])
if
cond_a
and
cond_b
:
return
True
def
_create_lookup_table
(
self
):
def
_create_lookup_table
(
self
):
"""
Make the lookup table
"""
"""
Make the lookup table
"""
self
.
distance_prior_array
=
np
.
array
([
self
.
priors
[
'
luminosity_distance
'
].
prob
(
distance
)
for
distance
in
self
.
_distance_array
])
self
.
distance_prior_array
=
np
.
array
(
[
self
.
priors
[
'
luminosity_distance
'
].
prob
(
distance
)
for
distance
in
self
.
_distance_array
])
# Check if a cached lookup table exists in file
cached_lookup_table
=
self
.
cached_lookup_table
if
cached_lookup_table
is
not
None
:
self
.
_dist_margd_loglikelihood_array
=
cached_lookup_table
[
-
1
]
logger
.
info
(
"
Using the cached lookup table {}
"
.
format
(
os
.
path
.
abspath
(
self
.
cached_lookup_table_filename
)))
return
logger
.
info
(
'
Building lookup table for distance marginalisation.
'
)
logger
.
info
(
'
Building lookup table for distance marginalisation.
'
)
self
.
_dist_margd_loglikelihood_array
=
np
.
zeros
((
400
,
800
))
self
.
_dist_margd_loglikelihood_array
=
np
.
zeros
((
400
,
800
))
...
@@ -317,6 +370,10 @@ class GravitationalWaveTransient(likelihood.Likelihood):
...
@@ -317,6 +370,10 @@ class GravitationalWaveTransient(likelihood.Likelihood):
log_norm
=
logsumexp
(
0.
/
self
.
_distance_array
-
0.
/
self
.
_distance_array
**
2.
,
log_norm
=
logsumexp
(
0.
/
self
.
_distance_array
-
0.
/
self
.
_distance_array
**
2.
,
b
=
self
.
distance_prior_array
*
self
.
_delta_distance
)
b
=
self
.
distance_prior_array
*
self
.
_delta_distance
)
self
.
_dist_margd_loglikelihood_array
-=
log_norm
self
.
_dist_margd_loglikelihood_array
-=
log_norm
self
.
cached_lookup_table
=
np
.
array
([
self
.
_distance_array
,
self
.
distance_prior_array
,
self
.
_dist_margd_loglikelihood_array
])
def
_setup_phase_marginalization
(
self
):
def
_setup_phase_marginalization
(
self
):
self
.
_bessel_function_interped
=
interp1d
(
self
.
_bessel_function_interped
=
interp1d
(
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment