Skip to content
Snippets Groups Projects
Commit fbf5a7c8 authored by Gregory Ashton's avatar Gregory Ashton Committed by Moritz Huebner
Browse files

Resolve "Add cacheing of marginalized luminosity-distance lookup table"

parent a5c53004
No related branches found
No related tags found
No related merge requests found
from __future__ import division from __future__ import division
import os
import json import json
import numpy as np import numpy as np
...@@ -297,10 +298,62 @@ class GravitationalWaveTransient(likelihood.Likelihood): ...@@ -297,10 +298,62 @@ class GravitationalWaveTransient(likelihood.Likelihood):
self._rho_mf_ref_array, self._rho_opt_ref_array, self._rho_mf_ref_array, self._rho_opt_ref_array,
self._dist_margd_loglikelihood_array) self._dist_margd_loglikelihood_array)
@property
def cached_lookup_table_filename(self):
dmin = self._distance_array[0]
dmax = self._distance_array[-1]
n = len(self._distance_array)
cached_lookup_table_filename = (
'.distance_marginalization_lookup_dmin{}_dmax{}_n{}_v1.npy'
.format(dmin, dmax, n))
return cached_lookup_table_filename
@property
def cached_lookup_table(self):
""" Reads in the cached lookup table
Returns
-------
cached_lookup_table: np.ndarray
Columns are _distance_array, distance_prior_array,
dist_marged_log_l_tc_array. This is only returned if the file
exists and the first two columns match the equivalent values
stored on disk.
"""
if os.path.exists(self.cached_lookup_table_filename):
loaded_file = np.load(self.cached_lookup_table_filename)
if self._test_cached_lookup_table(loaded_file):
return loaded_file
else:
return None
@cached_lookup_table.setter
def cached_lookup_table(self, lookup_table):
np.save(self.cached_lookup_table_filename, lookup_table)
def _test_cached_lookup_table(self, lookup_table):
cond_a = np.all(self._distance_array == lookup_table[0])
cond_b = np.all(self.distance_prior_array == lookup_table[1])
if cond_a and cond_b:
return True
def _create_lookup_table(self): def _create_lookup_table(self):
""" Make the lookup table """ """ Make the lookup table """
self.distance_prior_array = np.array([self.priors['luminosity_distance'].prob(distance)
for distance in self._distance_array]) self.distance_prior_array = np.array(
[self.priors['luminosity_distance'].prob(distance)
for distance in self._distance_array])
# Check if a cached lookup table exists in file
cached_lookup_table = self.cached_lookup_table
if cached_lookup_table is not None:
self._dist_margd_loglikelihood_array = cached_lookup_table[-1]
logger.info("Using the cached lookup table {}"
.format(os.path.abspath(self.cached_lookup_table_filename)))
return
logger.info('Building lookup table for distance marginalisation.') logger.info('Building lookup table for distance marginalisation.')
self._dist_margd_loglikelihood_array = np.zeros((400, 800)) self._dist_margd_loglikelihood_array = np.zeros((400, 800))
...@@ -317,6 +370,10 @@ class GravitationalWaveTransient(likelihood.Likelihood): ...@@ -317,6 +370,10 @@ class GravitationalWaveTransient(likelihood.Likelihood):
log_norm = logsumexp(0. / self._distance_array - 0. / self._distance_array ** 2., log_norm = logsumexp(0. / self._distance_array - 0. / self._distance_array ** 2.,
b=self.distance_prior_array * self._delta_distance) b=self.distance_prior_array * self._delta_distance)
self._dist_margd_loglikelihood_array -= log_norm self._dist_margd_loglikelihood_array -= log_norm
self.cached_lookup_table = np.array([
self._distance_array,
self.distance_prior_array,
self._dist_margd_loglikelihood_array])
def _setup_phase_marginalization(self): def _setup_phase_marginalization(self):
self._bessel_function_interped = interp1d( self._bessel_function_interped = interp1d(
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment