Skip to content
Snippets Groups Projects

vectorise prior calculations

Merged Colm Talbot requested to merge vectorise-prior-calculation into master
1 file
+ 4
8
Compare changes
  • Side-by-side
  • Inline
+ 4
8
@@ -1029,7 +1029,7 @@ class Result(object):
----------
likelihood: bilby.likelihood.GravitationalWaveTransient, optional
GravitationalWaveTransient likelihood used for sampling.
priors: dict, optional
priors: bilby.prior.PriorDict, optional
Dictionary of prior object, used to fill in delta function priors.
conversion_function: function, optional
Function which adds in extra parameters to the data frame,
@@ -1044,13 +1044,9 @@ class Result(object):
data_frame, priors)
data_frame['log_likelihood'] = getattr(
self, 'log_likelihood_evaluations', np.nan)
if self.log_prior_evaluations is None:
ln_prior = list()
for ii in range(len(data_frame)):
ln_prior.append(
self.priors.ln_prob(dict(
data_frame[self.search_parameter_keys].iloc[ii])))
data_frame['log_prior'] = np.array(ln_prior)
if self.log_prior_evaluations is None and priors is not None:
data_frame['log_prior'] = priors.ln_prob(
dict(data_frame[self.search_parameter_keys]), axis=0)
else:
data_frame['log_prior'] = self.log_prior_evaluations
if conversion_function is not None:
Loading