Skip to content
Snippets Groups Projects

Improve ptemcee

Merged Gregory Ashton requested to merge improve-ptemcee into master
All threads resolved!
Compare and
2 files
+ 708
112
Compare changes
  • Side-by-side
  • Inline
Files
2
+ 706
111
from __future__ import absolute_import, division, print_function
import os
from shutil import copyfile
import datetime
import copy
import signal
import sys
import time
import dill
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from ..utils import logger, get_progress_bar
from . import Emcee
from .base_sampler import SamplerError
from ..utils import logger
from .base_sampler import SamplerError, MCMCSampler
class Ptemcee(Emcee):
class Ptemcee(MCMCSampler):
"""bilby wrapper ptemcee (https://github.com/willvousden/ptemcee)
All positional and keyword arguments (i.e., the args and kwargs) passed to
@@ -20,148 +24,739 @@ class Ptemcee(Emcee):
documentation for that class for further help. Under Other Parameters, we
list commonly used kwargs and the bilby defaults.
Parameters
----------
nsamples: int, (5000)
The requested number of samples. Note, in cases where the
autocorrelation parameter is difficult to measure, it is possible to
end up with more than nsamples.
burn_in_act, thin_by_nact: int, (50, 1)
The number of burn-in autocorrelation times to discard and the thin-by
factor. Increasing burn_in_act increases the time required for burn-in.
Increasing thin_by_nact increases the time required to obtain nsamples.
autocorr_tol: int, (50)
The minimum number of autocorrelation times needed to trust the
estimate of the autocorrelation time.
autocorr_c: int, (5)
The step size for the window search used by emcee.autocorr.integrated_time
safety: int, (1)
A multiplicitive factor for the estimated autocorrelation. Useful for
cases where non-convergence can be observed by eye but the automated
tools are failing.
autocorr_tau:
The number of autocorrelation times to use in assessing if the
autocorrelation time is stable.
frac_threshold: float, (0.01)
The maximum fractional change in the autocorrelation for the last
autocorr_tau steps. If the fractional change exceeds this value,
sampling will continue until the estimate of the autocorrelation time
can be trusted.
min_tau: int, (1)
A minimum tau (autocorrelation time) to accept.
check_point_deltaT: float, (600)
The period with which to checkpoint (in seconds).
threads: int, (1)
If threads > 1, a MultiPool object is setup and used.
exit_code: int, (77)
The code on which the sampler exits.
store_walkers: bool (False)
If true, store the unthinned, unburnt chaines in the result. Note, this
is not recommended for cases where tau is large.
ignore_keys_for_tau: str
A pattern used to ignore keys in estimating the autocorrelation time.
pos0: str, list ("prior")
If a string, one of "prior" or "minimize". For "prior", the initial
positions of the sampler are drawn from the sampler. If "minimize",
a scipy.optimize step is applied to all parameters a number of times.
The walkers are then initialized from the range of values obtained.
If a list, for the keys in the list the optimization step is applied,
otherwise the initial points are drawn from the prior.
Other Parameters
----------------
nwalkers: int, (100)
nwalkers: int, (200)
The number of walkers
nsteps: int, (100)
The number of steps to take
nburn: int (50)
The fixed number of steps to discard as burn-in
ntemps: int (2)
The number of temperatures used by ptemcee
Tmax: float
The maximum temperature
"""
# Arguments used by ptemcee
default_kwargs = dict(
ntemps=2, nwalkers=500, Tmax=None, betas=None, threads=1, pool=None,
a=2.0, loglargs=[], logpargs=[], loglkwargs={}, logpkwargs={},
adaptation_lag=10000, adaptation_time=100, random=None, iterations=100,
thin=1, storechain=True, adapt=True, swap_ratios=False)
def __init__(self, likelihood, priors, outdir='outdir', label='label',
use_ratio=False, plot=False, skip_import_verification=False,
nburn=None, burn_in_fraction=0.25, burn_in_act=3, resume=True,
**kwargs):
ntemps=20,
nwalkers=200,
Tmax=None,
betas=None,
a=2.0,
loglargs=[],
logpargs=[],
loglkwargs={},
logpkwargs={},
adaptation_lag=10000,
adaptation_time=100,
random=None,
adapt=False,
swap_ratios=False,
)
def __init__(
self,
likelihood,
priors,
outdir="outdir",
label="label",
use_ratio=False,
check_point_plot=True,
skip_import_verification=False,
resume=True,
nsamples=5000,
burn_in_nact=50,
thin_by_nact=1,
autocorr_tol=50,
autocorr_c=5,
safety=1,
autocorr_tau=5,
frac_threshold=0.01,
min_tau=1,
check_point_deltaT=600,
threads=1,
exit_code=77,
plot=False,
store_walkers=False,
ignore_keys_for_tau=None,
pos0="prior",
**kwargs
):
super(Ptemcee, self).__init__(
likelihood=likelihood, priors=priors, outdir=outdir,
label=label, use_ratio=use_ratio, plot=plot,
likelihood=likelihood,
priors=priors,
outdir=outdir,
label=label,
use_ratio=use_ratio,
plot=plot,
skip_import_verification=skip_import_verification,
nburn=nburn, burn_in_fraction=burn_in_fraction,
burn_in_act=burn_in_act, resume=resume, **kwargs)
**kwargs
)
signal.signal(signal.SIGTERM, self.write_current_state_and_exit)
signal.signal(signal.SIGINT, self.write_current_state_and_exit)
signal.signal(signal.SIGALRM, self.write_current_state_and_exit)
self.resume = resume
self.autocorr_c = autocorr_c
self.safety = safety
self.burn_in_nact = burn_in_nact
self.thin_by_nact = thin_by_nact
self.frac_threshold = frac_threshold
self.nsamples = nsamples
self.autocorr_tol = autocorr_tol
self.autocorr_tau = autocorr_tau
self.min_tau = min_tau
self.check_point_deltaT = check_point_deltaT
self.threads = threads
self.store_walkers = store_walkers
self.ignore_keys_for_tau = ignore_keys_for_tau
self.pos0 = pos0
self.check_point_plot = check_point_plot
self.resume_file = "{}/{}_checkpoint_resume.pickle".format(
self.outdir, self.label
)
self.exit_code = exit_code
@property
def sampler_function_kwargs(self):
keys = ['iterations', 'thin', 'storechain', 'adapt', 'swap_ratios']
keys = ["adapt", "swap_ratios"]
return {key: self.kwargs[key] for key in keys}
@property
def sampler_init_kwargs(self):
return {key: value
for key, value in self.kwargs.items()
if key not in self.sampler_function_kwargs}
return {
key: value
for key, value in self.kwargs.items()
if key not in self.sampler_function_kwargs
}
@property
def ntemps(self):
return self.kwargs['ntemps']
def get_pos0_from_prior(self):
""" for ptemcee, the pos0 has the shape ntemps, nwalkers, ndim """
logger.info("Generating pos0 samples")
return [
[
self.get_random_draw_from_prior()
for _ in range(self.sampler_init_kwargs["nwalkers"])
]
for _ in range(self.kwargs["ntemps"])
]
@property
def sampler_chain(self):
nsteps = self._previous_iterations
return self.sampler.chain[:, :, :nsteps, :]
def get_pos0_from_minimize(self, minimize_list=None):
logger.info("Attempting to set pos0 from minimize")
from scipy.optimize import minimize
def _initialise_sampler(self):
import ptemcee
self._sampler = ptemcee.Sampler(
dim=self.ndim, logl=self.log_likelihood, logp=self.log_prior,
**self.sampler_init_kwargs)
self._init_chain_file()
def print_tswap_acceptance_fraction(self):
logger.info("Sampler per-chain tswap acceptance fraction = {}".format(
self.sampler.tswap_acceptance_fraction))
def write_chains_to_file(self, pos, loglike, logpost):
chain_file = self.checkpoint_info.chain_file
temp_chain_file = chain_file + '.temp'
if os.path.isfile(chain_file):
if minimize_list is None:
minimize_list = self.search_parameter_keys
pos0 = np.zeros((self.kwargs["ntemps"], self.kwargs["nwalkers"], self.ndim))
else:
pos0 = np.array(self.get_pos0_from_prior())
likelihood_copy = copy.copy(self.likelihood)
def neg_log_like(params):
likelihood_copy.parameters.update(
{key: val for key, val in zip(minimize_list, params)}
)
try:
copyfile(chain_file, temp_chain_file)
except OSError:
logger.warning("Failed to write temporary chain file {}".format(temp_chain_file))
with open(temp_chain_file, "a") as ff:
loglike = np.squeeze(loglike[0, :])
logprior = np.squeeze(logpost[0, :]) - loglike
for ii, (point, logl, logp) in enumerate(zip(pos[0, :, :], loglike, logprior)):
line = np.concatenate((point, [logl, logp]))
ff.write(self.checkpoint_info.chain_template.format(ii, *line))
os.rename(temp_chain_file, chain_file)
return -likelihood_copy.log_likelihood()
except RuntimeError:
return +np.inf
def write_current_state_and_exit(self, signum=None, frame=None):
logger.warning("Run terminated with signal {}".format(signum))
sys.exit(130)
bounds = [
(self.priors[key].minimum, self.priors[key].maximum)
for key in minimize_list
]
trials = 0
success = []
while True:
draw = self.priors.sample()
likelihood_copy.parameters.update(draw)
x0 = [draw[key] for key in minimize_list]
res = minimize(
neg_log_like, x0, bounds=bounds, method="L-BFGS-B", tol=1e-15
)
if res.success:
success.append(res.x)
if trials > 100:
raise SamplerError("Unable to set pos0 from minimize")
if len(success) >= 10:
break
@property
def _previous_iterations(self):
""" Returns the number of iterations that the sampler has saved
success = np.array(success)
for i, key in enumerate(minimize_list):
pos0_min = np.min(success[:, i])
pos0_max = np.max(success[:, i])
logger.info(
"Initialize {} walkers from {}->{}".format(key, pos0_min, pos0_max)
)
j = self.search_parameter_keys.index(key)
pos0[:, :, j] = np.random.uniform(
pos0_min,
pos0_max,
size=(self.kwargs["ntemps"], self.kwargs["nwalkers"]),
)
return pos0
def setup_sampler(self):
import ptemcee
This is used when loading in a sampler from a pickle file to figure out
how much of the run has already been completed
"""
return self.sampler.time
if os.path.isfile(self.resume_file) and self.resume is True:
logger.info("Resume data {} found".format(self.resume_file))
with open(self.resume_file, "rb") as file:
data = dill.load(file)
def _draw_pos0_from_prior(self):
# for ptemcee, the pos0 has the shape ntemps, nwalkers, ndim
return [[self.get_random_draw_from_prior()
for _ in range(self.nwalkers)]
for _ in range(self.kwargs['ntemps'])]
self.sampler = data["sampler"]
self.tau_list = data["tau_list"]
self.tau_list_n = data["tau_list_n"]
self.time_per_check = data["time_per_check"]
@property
def _pos0_shape(self):
return (self.ntemps, self.nwalkers, self.ndim)
self.sampler.pool = self.pool
self.sampler.threads = self.threads
pos0 = None
logger.info(
"Resuming from previous run with time={}".format(self.sampler.time)
)
else:
# Initialize the PTSampler
if self.threads == 1:
self.sampler = ptemcee.Sampler(
dim=self.ndim,
logl=self.log_likelihood,
logp=self.log_prior,
**self.sampler_init_kwargs
)
else:
self.sampler = ptemcee.Sampler(
dim=self.ndim,
logl=do_nothing_function,
logp=do_nothing_function,
pool=self.pool,
threads=self.threads,
**self.sampler_init_kwargs
)
self.sampler._likeprior = LikePriorEvaluator(
self.search_parameter_keys, use_ratio=self.use_ratio
)
# Set up empty lists
self.tau_list = []
self.tau_list_n = []
self.time_per_check = []
# Initialize the walker postitions
pos0 = self.get_pos0()
return self.sampler, pos0
def _set_pos0_for_resume(self):
self.pos0 = None
def get_pos0(self):
if isinstance(self.pos0, str) and self.pos0.lower() == "prior":
return self.get_pos0_from_prior()
elif isinstance(self.pos0, str) and self.pos0.lower() == "minimize":
return self.get_pos0_from_minimize()
elif isinstance(self.pos0, list):
return self.get_pos0_from_minimize(minimize_list=self.pos0)
else:
raise SamplerError("pos0={} not implemented".format(self.pos0))
def setup_pool(self):
if self.threads > 1:
import schwimmbad
logger.info("Creating MultiPool with {} processes".format(self.threads))
self.pool = schwimmbad.MultiPool(
self.threads, initializer=init, initargs=(self.likelihood, self.priors)
)
else:
self.pool = None
def run_sampler(self):
tqdm = get_progress_bar()
sampler_function_kwargs = self.sampler_function_kwargs
iterations = sampler_function_kwargs.pop('iterations')
iterations -= self._previous_iterations
# main iteration loop
for pos, logpost, loglike in tqdm(
self.sampler.sample(self.pos0, iterations=iterations,
**sampler_function_kwargs),
total=iterations):
self.write_chains_to_file(pos, loglike, logpost)
self.checkpoint()
self.calculate_autocorrelation(self.sampler.chain.reshape((-1, self.ndim)))
self.result.sampler_output = np.nan
self.print_nburn_logging_info()
self.print_tswap_acceptance_fraction()
self.setup_pool()
out = self.run_sampler_internal()
if self.pool:
self.pool.close()
return out
def run_sampler_internal(self):
import emcee
sampler, pos0 = self.setup_sampler()
t0 = datetime.datetime.now()
logger.info("Starting to sample")
while True:
for (pos0, _, _) in sampler.sample(pos0, **self.sampler_function_kwargs):
pass
# Calculate time per iteration
self.time_per_check.append((datetime.datetime.now() - t0).total_seconds())
t0 = datetime.datetime.now()
# Compute ACT tau for 0-temperature chains
samples = sampler.chain[0, :, : sampler.time, :]
taus = []
for ii in range(sampler.nwalkers):
for jj, key in enumerate(self.search_parameter_keys):
if self.ignore_keys_for_tau and self.ignore_keys_for_tau in key:
continue
try:
taus.append(
emcee.autocorr.integrated_time(
samples[ii, :, jj], c=self.autocorr_c, tol=0
)[0]
)
except emcee.autocorr.AutocorrError:
taus.append(np.inf)
# Apply multiplicitive safety factor
tau = self.safety * np.mean(taus)
# Store for convergence checking and plotting
self.tau_list.append(tau)
self.tau_list_n.append(sampler.time)
# Convert to an integer
tau_int = int(np.ceil(tau)) if not np.isnan(tau) else tau
if np.isnan(tau_int) or np.isinf(tau_int):
print_progress(
self.sampler,
self.time_per_check,
self.nsamples,
np.nan,
np.nan,
np.nan,
[np.nan],
False,
)
continue
# Calculate the effective number of samples available
self.nburn = int(self.burn_in_nact * tau_int)
self.thin = int(np.max([1, self.thin_by_nact * tau_int]))
samples_per_check = sampler.nwalkers / self.thin
self.nsamples_effective = int(
sampler.nwalkers * (sampler.time - self.nburn) / self.thin
)
# Calculate convergence boolean
converged = self.nsamples < self.nsamples_effective
# Calculate fractional change in tau from previous iterations
check_taus = np.array(self.tau_list[-tau_int * self.autocorr_tau :])
if not np.any(np.isnan(check_taus)):
frac = (tau - check_taus) / tau
tau_usable = np.all(frac < self.frac_threshold)
else:
tau_usable = False
if sampler.time < tau_int * self.autocorr_tol or tau_int < self.min_tau:
tau_usable = False
# Print an update on the progress
print_progress(
self.sampler,
self.time_per_check,
self.nsamples,
self.nsamples_effective,
samples_per_check,
tau_int,
check_taus,
tau_usable,
)
if converged and tau_usable:
logger.info("Finished sampling")
break
# If a checkpoint is due, checkpoint
if os.path.isfile(self.resume_file):
last_checkpoint_s = time.time() - os.path.getmtime(self.resume_file)
else:
last_checkpoint_s = np.sum(self.time_per_check)
if last_checkpoint_s > self.check_point_deltaT:
self.write_current_state(plot=self.check_point_plot)
# Run a final checkpoint to update the plots and samples
self.write_current_state(plot=self.check_point_plot)
# Get 0-likelihood samples and store in the result
samples = sampler.chain[0, :, :, :] # nwalkers, nsteps, ndim
self.result.samples = samples[
:, self.nburn : sampler.time : self.thin, :
].reshape((-1, self.ndim))
loglikelihood = sampler.loglikelihood[
0, :, self.nburn : sampler.time : self.thin
] # nwalkers, nsteps
self.result.log_likelihood_evaluations = loglikelihood.reshape((-1))
if self.store_walkers:
self.result.walkers = self.sampler.chain
self.result.nburn = self.nburn
if self.result.nburn > self.nsteps:
raise SamplerError(
"The run has finished, but the chain is not burned in: "
"`nburn < nsteps`. Try increasing the number of steps.")
self.calc_likelihood_count()
self.result.samples = self.sampler.chain[0, :, self.nburn:, :].reshape(
(-1, self.ndim))
self.result.walkers = self.sampler.chain[0, :, :, :]
n_samples = self.nwalkers * self.nburn
self.result.log_likelihood_evaluations = self.stored_loglike[n_samples:]
self.result.log_prior_evaluations = self.stored_logprior[n_samples:]
self.result.betas = self.sampler.betas
self.result.log_evidence, self.result.log_evidence_err =\
self.sampler.log_evidence_estimate(
self.sampler.loglikelihood, self.nburn / self.nsteps)
log_evidence, log_evidence_err = compute_evidence(
sampler, self.outdir, self.label, self.nburn, self.thin
)
self.result.log_evidence = log_evidence
self.result.log_evidence_err = log_evidence_err
self.result.sampling_time = datetime.timedelta(
seconds=np.sum(self.time_per_check)
)
return self.result
def write_current_state_and_exit(self, signum=None, frame=None):
logger.warning("Run terminated with signal {}".format(signum))
if getattr(self, "pool", None):
self.write_current_state(plot=False)
logger.warning("Closing pool")
self.pool.close()
sys.exit(self.exit_code)
def write_current_state(self, plot=True):
checkpoint(
self.outdir,
self.label,
self.nsamples_effective,
self.sampler,
self.nburn,
self.thin,
self.search_parameter_keys,
self.resume_file,
self.tau_list,
self.tau_list_n,
self.time_per_check,
)
if plot and not np.isnan(self.nburn):
# Generate the walkers plot diagnostic
plot_walkers(
self.sampler.chain[0, :, : self.sampler.time, :],
self.nburn,
self.thin,
self.search_parameter_keys,
self.outdir,
self.label,
)
# Generate the tau plot diagnostic
plot_tau(
self.tau_list_n,
self.tau_list,
self.outdir,
self.label,
self.autocorr_tau,
)
def print_progress(
sampler,
time_per_check,
nsamples,
nsamples_effective,
samples_per_check,
tau_int,
tau_list,
tau_usable,
):
# Setup acceptance string
acceptance = sampler.acceptance_fraction[0, :]
acceptance_str = "{:1.2f}->{:1.2f}".format(np.min(acceptance), np.max(acceptance))
# Setup tswap acceptance string
tswap_acceptance_fraction = sampler.tswap_acceptance_fraction
tswap_acceptance_str = "{:1.2f}->{:1.2f}".format(
np.min(tswap_acceptance_fraction), np.max(tswap_acceptance_fraction)
)
ave_time_per_check = np.mean(time_per_check[-3:])
time_left = (nsamples - nsamples_effective) * ave_time_per_check / samples_per_check
if time_left > 0:
time_left = str(datetime.timedelta(seconds=int(time_left)))
else:
time_left = "waiting on convergence"
sampling_time = datetime.timedelta(seconds=np.sum(time_per_check))
tau_str = "{}:{:0.1f}->{:0.1f}".format(tau_int, np.min(tau_list), np.max(tau_list))
if tau_usable:
tau_str = "={}".format(tau_str)
else:
tau_str = "!{}".format(tau_str)
evals_per_check = sampler.nwalkers * sampler.ntemps
ncalls = "{:1.1e}".format(sampler.time * sampler.nwalkers * sampler.ntemps)
eval_timing = "{:1.1f}ms/ev".format(1e3 * ave_time_per_check / evals_per_check)
samp_timing = "{:1.1f}ms/sm".format(1e3 * ave_time_per_check / samples_per_check)
print(
"{}| {} | nc:{}| a0:{}| swp:{}| n:{}<{}| tau{}| {}| {}".format(
sampler.time,
str(sampling_time).split(".")[0],
ncalls,
acceptance_str,
tswap_acceptance_str,
nsamples_effective,
nsamples,
tau_str,
eval_timing,
samp_timing,
),
flush=True,
)
def checkpoint(
outdir,
label,
nsamples_effective,
sampler,
nburn,
thin,
search_parameter_keys,
resume_file,
tau_list,
tau_list_n,
time_per_check,
):
logger.info("Writing checkpoint and diagnostics")
ndim = sampler.dim
# Store the samples if possible
if nsamples_effective > 0:
filename = "{}/{}_samples.txt".format(outdir, label)
samples = sampler.chain[0, :, nburn : sampler.time : thin, :].reshape(
(-1, ndim)
)
df = pd.DataFrame(samples, columns=search_parameter_keys)
df.to_csv(filename, index=False, header=True, sep=" ")
# Pickle the resume artefacts
sampler_copy = copy.copy(sampler)
del sampler_copy.pool
sampler_copy._chain = sampler._chain[:, :, : sampler.time, :]
sampler_copy._logposterior = sampler._logposterior[:, :, : sampler.time]
sampler_copy._loglikelihood = sampler._loglikelihood[:, :, : sampler.time]
sampler_copy._beta_history = sampler._beta_history[:, : sampler.time]
data = dict(
sampler=sampler_copy,
tau_list=tau_list,
tau_list_n=tau_list_n,
time_per_check=time_per_check,
)
with open(resume_file, "wb") as file:
dill.dump(data, file, protocol=4)
del data, sampler_copy
logger.info("Finished writing checkpoint")
def plot_walkers(walkers, nburn, thin, parameter_labels, outdir, label):
""" Method to plot the trace of the walkers in an ensemble MCMC plot """
nwalkers, nsteps, ndim = walkers.shape
idxs = np.arange(nsteps)
fig, axes = plt.subplots(nrows=ndim, ncols=2, figsize=(8, 3 * ndim))
scatter_kwargs = dict(lw=0, marker="o", markersize=1, alpha=0.05,)
# Plot the burn-in
for i, (ax, axh) in enumerate(axes):
ax.plot(
idxs[: nburn + 1],
walkers[:, : nburn + 1, i].T,
color="C1",
**scatter_kwargs
)
# Plot the thinned posterior samples
for i, (ax, axh) in enumerate(axes):
ax.plot(
idxs[nburn::thin],
walkers[:, nburn::thin, i].T,
color="C0",
**scatter_kwargs
)
axh.hist(walkers[:, nburn::thin, i].reshape((-1)), bins=50, alpha=0.8)
axh.set_xlabel(parameter_labels[i])
ax.set_ylabel(parameter_labels[i])
fig.tight_layout()
filename = "{}/{}_checkpoint_trace.png".format(outdir, label)
fig.savefig(filename)
plt.close(fig)
def plot_tau(tau_list_n, tau_list, outdir, label, autocorr_tau):
fig, ax = plt.subplots()
ax.plot(tau_list_n, tau_list, "-", color="C1")
check_tau_idx = -int(tau_list[-1] * autocorr_tau)
check_taus = tau_list[check_tau_idx:]
check_taus_n = tau_list_n[check_tau_idx:]
ax.plot(check_taus_n, check_taus, "-", color="C0")
ax.set_xlabel("Iteration")
ax.set_ylabel(r"$\langle \tau \rangle$")
fig.savefig("{}/{}_checkpoint_tau.png".format(outdir, label))
plt.close(fig)
def compute_evidence(sampler, outdir, label, nburn, thin, make_plots=True):
""" Computes the evidence using thermodynamic integration """
betas = sampler.betas
# We compute the evidence without the burnin samples, but we do not thin
lnlike = sampler.loglikelihood[:, :, nburn : sampler.time]
mean_lnlikes = np.mean(np.mean(lnlike, axis=1), axis=1)
mean_lnlikes = mean_lnlikes[::-1]
betas = betas[::-1]
if any(np.isinf(mean_lnlikes)):
logger.warning(
"mean_lnlikes contains inf: recalculating without"
" the {} infs".format(len(betas[np.isinf(mean_lnlikes)]))
)
idxs = np.isinf(mean_lnlikes)
mean_lnlikes = mean_lnlikes[~idxs]
betas = betas[~idxs]
lnZ = np.trapz(mean_lnlikes, betas)
z1 = np.trapz(mean_lnlikes, betas)
z2 = np.trapz(mean_lnlikes[::-1][::2][::-1], betas[::-1][::2][::-1])
lnZerr = np.abs(z1 - z2)
if make_plots:
fig, (ax1, ax2) = plt.subplots(nrows=2, figsize=(6, 8))
ax1.semilogx(betas, mean_lnlikes, "-o")
ax1.set_xlabel(r"$\beta$")
ax1.set_ylabel(r"$\langle \log(\mathcal{L}) \rangle$")
min_betas = []
evidence = []
for i in range(int(len(betas) / 2.0)):
min_betas.append(betas[i])
evidence.append(np.trapz(mean_lnlikes[i:], betas[i:]))
ax2.semilogx(min_betas, evidence, "-o")
ax2.set_ylabel(
r"$\int_{\beta_{min}}^{\beta=1}"
+ r"\langle \log(\mathcal{L})\rangle d\beta$",
size=16,
)
ax2.set_xlabel(r"$\beta_{min}$")
plt.tight_layout()
fig.savefig("{}/{}_beta_lnl.png".format(outdir, label))
return lnZ, lnZerr
def do_nothing_function():
""" This is a do-nothing function, we overwrite the likelihood and prior elsewhere """
pass
likelihood = None
priors = None
def init(likelihood_in, priors_in):
global likelihood
global priors
likelihood = likelihood_in
priors = priors_in
class LikePriorEvaluator(object):
"""
A overwrite of the ptemcee.LikePriorEvaluator to use bilby likelihood and priors
"""
def __init__(self, search_parameter_keys, use_ratio=False):
self.search_parameter_keys = search_parameter_keys
self.use_ratio = use_ratio
def logl(self, v_array):
parameters = {key: v for key, v in zip(self.search_parameter_keys, v_array)}
if priors.evaluate_constraints(parameters) > 0:
likelihood.parameters.update(parameters)
if self.use_ratio:
return likelihood.log_likelihood() - likelihood.noise_log_likelihood()
else:
return likelihood.log_likelihood()
else:
return np.nan_to_num(-np.inf)
def logp(self, v_array):
params = {key: t for key, t in zip(self.search_parameter_keys, v_array)}
return priors.ln_prob(params)
def __call__(self, x):
lp = self.logp(x)
if np.isnan(lp):
raise ValueError("Prior function returned NaN.")
if lp == float("-inf"):
# Can't return -inf, since this messes with beta=0 behaviour.
ll = 0
else:
ll = self.logl(x)
if np.isnan(ll).any():
raise ValueError("Log likelihood function returned NaN.")
return ll, lp
Loading