Skip to content
Snippets Groups Projects

Improve ptemcee

Merged Gregory Ashton requested to merge improve-ptemcee into master
All threads resolved!
Compare and Show latest version
1 file
+ 2
2
Compare changes
  • Side-by-side
  • Inline
+ 880
111
from __future__ import absolute_import, division, print_function
import os
from shutil import copyfile
import datetime
import copy
import signal
import sys
import time
import dill
from collections import namedtuple
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from ..utils import logger, get_progress_bar
from . import Emcee
from .base_sampler import SamplerError
from ..utils import logger
from .base_sampler import SamplerError, MCMCSampler
class Ptemcee(Emcee):
ConvergenceInputs = namedtuple(
"ConvergenceInputs",
[
"autocorr_c",
"autocorr_tol",
"autocorr_tau",
"safety",
"burn_in_nact",
"thin_by_nact",
"frac_threshold",
"nsamples",
"ignore_keys_for_tau",
"min_tau",
"niterations_per_check",
],
)
class Ptemcee(MCMCSampler):
"""bilby wrapper ptemcee (https://github.com/willvousden/ptemcee)
All positional and keyword arguments (i.e., the args and kwargs) passed to
@@ -20,148 +43,894 @@ class Ptemcee(Emcee):
documentation for that class for further help. Under Other Parameters, we
list commonly used kwargs and the bilby defaults.
Parameters
----------
nsamples: int, (5000)
The requested number of samples. Note, in cases where the
autocorrelation parameter is difficult to measure, it is possible to
end up with more than nsamples.
burn_in_nact, thin_by_nact: int, (50, 1)
The number of burn-in autocorrelation times to discard and the thin-by
factor. Increasing burn_in_nact increases the time required for burn-in.
Increasing thin_by_nact increases the time required to obtain nsamples.
autocorr_tol: int, (50)
The minimum number of autocorrelation times needed to trust the
estimate of the autocorrelation time.
autocorr_c: int, (5)
The step size for the window search used by emcee.autocorr.integrated_time
safety: int, (1)
A multiplicitive factor for the estimated autocorrelation. Useful for
cases where non-convergence can be observed by eye but the automated
tools are failing.
autocorr_tau:
The number of autocorrelation times to use in assessing if the
autocorrelation time is stable.
frac_threshold: float, (0.01)
The maximum fractional change in the autocorrelation for the last
autocorr_tau steps. If the fractional change exceeds this value,
sampling will continue until the estimate of the autocorrelation time
can be trusted.
min_tau: int, (1)
A minimum tau (autocorrelation time) to accept.
check_point_deltaT: float, (600)
The period with which to checkpoint (in seconds).
threads: int, (1)
If threads > 1, a MultiPool object is setup and used.
exit_code: int, (77)
The code on which the sampler exits.
store_walkers: bool (False)
If true, store the unthinned, unburnt chaines in the result. Note, this
is not recommended for cases where tau is large.
ignore_keys_for_tau: str
A pattern used to ignore keys in estimating the autocorrelation time.
pos0: str, list ("prior")
If a string, one of "prior" or "minimize". For "prior", the initial
positions of the sampler are drawn from the sampler. If "minimize",
a scipy.optimize step is applied to all parameters a number of times.
The walkers are then initialized from the range of values obtained.
If a list, for the keys in the list the optimization step is applied,
otherwise the initial points are drawn from the prior.
Other Parameters
----------------
nwalkers: int, (100)
nwalkers: int, (200)
The number of walkers
nsteps: int, (100)
The number of steps to take
nburn: int (50)
The fixed number of steps to discard as burn-in
ntemps: int (2)
The number of temperatures used by ptemcee
Tmax: float
The maximum temperature
"""
# Arguments used by ptemcee
default_kwargs = dict(
ntemps=2, nwalkers=500, Tmax=None, betas=None, threads=1, pool=None,
a=2.0, loglargs=[], logpargs=[], loglkwargs={}, logpkwargs={},
adaptation_lag=10000, adaptation_time=100, random=None, iterations=100,
thin=1, storechain=True, adapt=True, swap_ratios=False)
def __init__(self, likelihood, priors, outdir='outdir', label='label',
use_ratio=False, plot=False, skip_import_verification=False,
nburn=None, burn_in_fraction=0.25, burn_in_act=3, resume=True,
**kwargs):
ntemps=20,
nwalkers=200,
Tmax=None,
betas=None,
a=2.0,
adaptation_lag=10000,
adaptation_time=100,
random=None,
adapt=True,
swap_ratios=False,
)
def __init__(
self,
likelihood,
priors,
outdir="outdir",
label="label",
use_ratio=False,
check_point_plot=True,
skip_import_verification=False,
resume=True,
nsamples=5000,
burn_in_nact=10,
thin_by_nact=0.5,
autocorr_tol=50,
autocorr_c=5,
safety=1,
autocorr_tau=5,
frac_threshold=0.01,
min_tau=1,
check_point_deltaT=600,
threads=1,
exit_code=77,
plot=False,
store_walkers=False,
ignore_keys_for_tau=None,
pos0="prior",
niterations_per_check=10,
**kwargs
):
super(Ptemcee, self).__init__(
likelihood=likelihood, priors=priors, outdir=outdir,
label=label, use_ratio=use_ratio, plot=plot,
likelihood=likelihood,
priors=priors,
outdir=outdir,
label=label,
use_ratio=use_ratio,
plot=plot,
skip_import_verification=skip_import_verification,
nburn=nburn, burn_in_fraction=burn_in_fraction,
burn_in_act=burn_in_act, resume=resume, **kwargs)
**kwargs
)
self.nwalkers = self.sampler_init_kwargs["nwalkers"]
self.ntemps = self.sampler_init_kwargs["ntemps"]
self.max_steps = 500
# Setup up signal handling
signal.signal(signal.SIGTERM, self.write_current_state_and_exit)
signal.signal(signal.SIGINT, self.write_current_state_and_exit)
signal.signal(signal.SIGALRM, self.write_current_state_and_exit)
# Checkpointing inputs
self.exit_code = exit_code
self.resume = resume
self.check_point_deltaT = check_point_deltaT
self.check_point_plot = check_point_plot
self.resume_file = "{}/{}_checkpoint_resume.pickle".format(
self.outdir, self.label
)
# Store convergence checking inputs in a named tuple
convergence_inputs_dict = dict(
autocorr_c=autocorr_c,
autocorr_tol=autocorr_tol,
autocorr_tau=autocorr_tau,
safety=safety,
burn_in_nact=burn_in_nact,
thin_by_nact=thin_by_nact,
frac_threshold=frac_threshold,
nsamples=nsamples,
ignore_keys_for_tau=ignore_keys_for_tau,
min_tau=min_tau,
niterations_per_check=niterations_per_check,
)
self.convergence_inputs = ConvergenceInputs(**convergence_inputs_dict)
# MultiProcessing inputs
self.threads = threads
# Misc inputs
self.store_walkers = store_walkers
self.pos0 = pos0
@property
def sampler_function_kwargs(self):
keys = ['iterations', 'thin', 'storechain', 'adapt', 'swap_ratios']
""" Kwargs passed to samper.sampler() """
keys = ["adapt", "swap_ratios"]
return {key: self.kwargs[key] for key in keys}
@property
def sampler_init_kwargs(self):
return {key: value
for key, value in self.kwargs.items()
if key not in self.sampler_function_kwargs}
""" Kwargs passed to initialize ptemcee.Sampler() """
return {
key: value
for key, value in self.kwargs.items()
if key not in self.sampler_function_kwargs
}
@property
def ntemps(self):
return self.kwargs['ntemps']
def _translate_kwargs(self, kwargs):
""" Translate kwargs """
if "nwalkers" not in kwargs:
for equiv in self.nwalkers_equiv_kwargs:
if equiv in kwargs:
kwargs["nwalkers"] = kwargs.pop(equiv)
@property
def sampler_chain(self):
nsteps = self._previous_iterations
return self.sampler.chain[:, :, :nsteps, :]
def get_pos0_from_prior(self):
""" Draw the initial positions from the prior
def _initialise_sampler(self):
import ptemcee
self._sampler = ptemcee.Sampler(
dim=self.ndim, logl=self.log_likelihood, logp=self.log_prior,
**self.sampler_init_kwargs)
self._init_chain_file()
def print_tswap_acceptance_fraction(self):
logger.info("Sampler per-chain tswap acceptance fraction = {}".format(
self.sampler.tswap_acceptance_fraction))
def write_chains_to_file(self, pos, loglike, logpost):
chain_file = self.checkpoint_info.chain_file
temp_chain_file = chain_file + '.temp'
if os.path.isfile(chain_file):
try:
copyfile(chain_file, temp_chain_file)
except OSError:
logger.warning("Failed to write temporary chain file {}".format(temp_chain_file))
with open(temp_chain_file, "a") as ff:
loglike = np.squeeze(loglike[0, :])
logprior = np.squeeze(logpost[0, :]) - loglike
for ii, (point, logl, logp) in enumerate(zip(pos[0, :, :], loglike, logprior)):
line = np.concatenate((point, [logl, logp]))
ff.write(self.checkpoint_info.chain_template.format(ii, *line))
os.rename(temp_chain_file, chain_file)
Returns
-------
pos0: list
The initial postitions of the walkers, with shape (ntemps, nwalkers, ndim)
def write_current_state_and_exit(self, signum=None, frame=None):
logger.warning("Run terminated with signal {}".format(signum))
sys.exit(130)
"""
logger.info("Generating pos0 samples")
return [
[
self.get_random_draw_from_prior()
for _ in range(self.nwalkers)
]
for _ in range(self.kwargs["ntemps"])
]
@property
def _previous_iterations(self):
""" Returns the number of iterations that the sampler has saved
def get_pos0_from_minimize(self, minimize_list=None):
""" Draw the initial positions using an initial minimization step
See pos0 in the class initialization for details.
Returns
-------
pos0: list
The initial postitions of the walkers, with shape (ntemps, nwalkers, ndim)
This is used when loading in a sampler from a pickle file to figure out
how much of the run has already been completed
"""
return self.sampler.time
def _draw_pos0_from_prior(self):
# for ptemcee, the pos0 has the shape ntemps, nwalkers, ndim
return [[self.get_random_draw_from_prior()
for _ in range(self.nwalkers)]
for _ in range(self.kwargs['ntemps'])]
from scipy.optimize import minimize
@property
def _pos0_shape(self):
return (self.ntemps, self.nwalkers, self.ndim)
# Set up the minimize list: keys not in this list will have initial
# positions drawn from the prior
if minimize_list is None:
minimize_list = self.search_parameter_keys
pos0 = np.zeros((self.kwargs["ntemps"], self.kwargs["nwalkers"], self.ndim))
else:
pos0 = np.array(self.get_pos0_from_prior())
logger.info("Attempting to set pos0 for {} from minimize".format(minimize_list))
likelihood_copy = copy.copy(self.likelihood)
def neg_log_like(params):
""" Internal function to minimize """
likelihood_copy.parameters.update(
{key: val for key, val in zip(minimize_list, params)}
)
try:
return -likelihood_copy.log_likelihood()
except RuntimeError:
return +np.inf
# Bounds used in the minimization
bounds = [
(self.priors[key].minimum, self.priors[key].maximum)
for key in minimize_list
]
# Run the minimization step several times to get a range of values
trials = 0
success = []
while True:
draw = self.priors.sample()
likelihood_copy.parameters.update(draw)
x0 = [draw[key] for key in minimize_list]
res = minimize(
neg_log_like, x0, bounds=bounds, method="L-BFGS-B", tol=1e-15
)
if res.success:
success.append(res.x)
if trials > 100:
raise SamplerError("Unable to set pos0 from minimize")
if len(success) >= 10:
break
# Initialize positions from the range of values
success = np.array(success)
for i, key in enumerate(minimize_list):
pos0_min = np.min(success[:, i])
pos0_max = np.max(success[:, i])
logger.info(
"Initialize {} walkers from {}->{}".format(key, pos0_min, pos0_max)
)
j = self.search_parameter_keys.index(key)
pos0[:, :, j] = np.random.uniform(
pos0_min,
pos0_max,
size=(self.kwargs["ntemps"], self.kwargs["nwalkers"]),
)
return pos0
def setup_sampler(self):
""" Either initialize the sampelr or read in the resume file """
import ptemcee
if os.path.isfile(self.resume_file) and self.resume is True:
logger.info("Resume data {} found".format(self.resume_file))
with open(self.resume_file, "rb") as file:
data = dill.load(file)
def _set_pos0_for_resume(self):
self.pos0 = None
# Extract the check-point data
self.sampler = data["sampler"]
self.iteration = data["iteration"]
self.chain_array = data["chain_array"]
self.log_likelihood_array = data["log_likelihood_array"]
self.pos0 = data["pos0"]
self.beta_list = data["beta_list"]
self.sampler._betas = np.array(self.beta_list[-1])
self.tau_list = data["tau_list"]
self.tau_list_n = data["tau_list_n"]
self.time_per_check = data["time_per_check"]
# Initialize the pool
self.sampler.pool = self.pool
self.sampler.threads = self.threads
logger.info(
"Resuming from previous run with time={}".format(self.iteration)
)
else:
# Initialize the PTSampler
if self.threads == 1:
self.sampler = ptemcee.Sampler(
dim=self.ndim,
logl=self.log_likelihood,
logp=self.log_prior,
**self.sampler_init_kwargs
)
else:
self.sampler = ptemcee.Sampler(
dim=self.ndim,
logl=do_nothing_function,
logp=do_nothing_function,
pool=self.pool,
threads=self.threads,
**self.sampler_init_kwargs
)
self.sampler._likeprior = LikePriorEvaluator(
self.search_parameter_keys, use_ratio=self.use_ratio
)
# Initialize storing results
self.iteration = 0
self.chain_array = self.get_zero_chain_array()
self.log_likelihood_array = self.get_zero_log_likelihood_array()
self.beta_list = []
self.tau_list = []
self.tau_list_n = []
self.time_per_check = []
self.pos0 = self.get_pos0()
return self.sampler
def get_zero_chain_array(self):
return np.zeros((self.nwalkers, self.max_steps, self.ndim))
def get_zero_log_likelihood_array(self):
return np.zeros((self.ntemps, self.nwalkers, self.max_steps))
def get_pos0(self):
""" Master logic for setting pos0 """
if isinstance(self.pos0, str) and self.pos0.lower() == "prior":
return self.get_pos0_from_prior()
elif isinstance(self.pos0, str) and self.pos0.lower() == "minimize":
return self.get_pos0_from_minimize()
elif isinstance(self.pos0, list):
return self.get_pos0_from_minimize(minimize_list=self.pos0)
else:
raise SamplerError("pos0={} not implemented".format(self.pos0))
def setup_pool(self):
""" If threads > 1, setup a MultiPool, else run in serial mode """
if self.threads > 1:
import schwimmbad
logger.info("Creating MultiPool with {} processes".format(self.threads))
self.pool = schwimmbad.MultiPool(
self.threads, initializer=init, initargs=(self.likelihood, self.priors)
)
else:
self.pool = None
def run_sampler(self):
tqdm = get_progress_bar()
sampler_function_kwargs = self.sampler_function_kwargs
iterations = sampler_function_kwargs.pop('iterations')
iterations -= self._previous_iterations
# main iteration loop
for pos, logpost, loglike in tqdm(
self.sampler.sample(self.pos0, iterations=iterations,
**sampler_function_kwargs),
total=iterations):
self.write_chains_to_file(pos, loglike, logpost)
self.checkpoint()
self.calculate_autocorrelation(self.sampler.chain.reshape((-1, self.ndim)))
self.result.sampler_output = np.nan
self.print_nburn_logging_info()
self.print_tswap_acceptance_fraction()
self.setup_pool()
sampler = self.setup_sampler()
t0 = datetime.datetime.now()
logger.info("Starting to sample")
while True:
for (pos0, log_posterior, log_likelihood) in sampler.sample(
self.pos0, storechain=False,
iterations=self.convergence_inputs.niterations_per_check,
**self.sampler_function_kwargs):
pass
if self.iteration == self.chain_array.shape[1]:
self.chain_array = np.concatenate((
self.chain_array, self.get_zero_chain_array()), axis=1)
self.log_likelihood_array = np.concatenate((
self.log_likelihood_array, self.get_zero_log_likelihood_array()),
axis=2)
self.pos0 = pos0
self.chain_array[:, self.iteration, :] = pos0[0, :, :]
self.log_likelihood_array[:, :, self.iteration] = log_likelihood
# Calculate time per iteration
self.time_per_check.append((datetime.datetime.now() - t0).total_seconds())
t0 = datetime.datetime.now()
self.iteration += 1
(
stop,
self.nburn,
self.thin,
self.tau_int,
self.nsamples_effective,
) = check_iteration(
self.chain_array[:, :self.iteration + 1, :],
sampler,
self.convergence_inputs,
self.search_parameter_keys,
self.time_per_check,
self.beta_list,
self.tau_list,
self.tau_list_n,
)
if stop:
logger.info("Finished sampling")
break
# If a checkpoint is due, checkpoint
if os.path.isfile(self.resume_file):
last_checkpoint_s = time.time() - os.path.getmtime(self.resume_file)
else:
last_checkpoint_s = np.sum(self.time_per_check)
if last_checkpoint_s > self.check_point_deltaT:
self.write_current_state(plot=self.check_point_plot)
# Run a final checkpoint to update the plots and samples
self.write_current_state(plot=self.check_point_plot)
# Get 0-likelihood samples and store in the result
self.result.samples = self.chain_array[
:, self.nburn : self.iteration : self.thin, :
].reshape((-1, self.ndim))
loglikelihood = self.log_likelihood_array[
0, :, self.nburn : self.iteration : self.thin
] # nwalkers, nsteps
self.result.log_likelihood_evaluations = loglikelihood.reshape((-1))
if self.store_walkers:
self.result.walkers = self.sampler.chain
self.result.nburn = self.nburn
if self.result.nburn > self.nsteps:
raise SamplerError(
"The run has finished, but the chain is not burned in: "
"`nburn < nsteps`. Try increasing the number of steps.")
self.calc_likelihood_count()
self.result.samples = self.sampler.chain[0, :, self.nburn:, :].reshape(
(-1, self.ndim))
self.result.walkers = self.sampler.chain[0, :, :, :]
n_samples = self.nwalkers * self.nburn
self.result.log_likelihood_evaluations = self.stored_loglike[n_samples:]
self.result.log_prior_evaluations = self.stored_logprior[n_samples:]
self.result.betas = self.sampler.betas
self.result.log_evidence, self.result.log_evidence_err =\
self.sampler.log_evidence_estimate(
self.sampler.loglikelihood, self.nburn / self.nsteps)
log_evidence, log_evidence_err = compute_evidence(
sampler, self.log_likelihood_array, self.outdir, self.label, self.nburn,
self.thin, self.iteration,
)
self.result.log_evidence = log_evidence
self.result.log_evidence_err = log_evidence_err
self.result.sampling_time = datetime.timedelta(
seconds=np.sum(self.time_per_check)
)
if self.pool:
self.pool.close()
return self.result
def write_current_state_and_exit(self, signum=None, frame=None):
logger.warning("Run terminated with signal {}".format(signum))
if getattr(self, "pool", None) or self.threads == 1:
self.write_current_state(plot=False)
if getattr(self, "pool", None):
logger.info("Closing pool")
self.pool.close()
logger.info("Exit on signal {}".format(self.exit_code))
sys.exit(self.exit_code)
def write_current_state(self, plot=True):
checkpoint(
self.iteration,
self.outdir,
self.label,
self.nsamples_effective,
self.sampler,
self.nburn,
self.thin,
self.search_parameter_keys,
self.resume_file,
self.log_likelihood_array,
self.chain_array,
self.pos0,
self.beta_list,
self.tau_list,
self.tau_list_n,
self.time_per_check,
)
if plot and not np.isnan(self.nburn):
# Generate the walkers plot diagnostic
plot_walkers(
self.chain_array[:, : self.iteration, :],
self.nburn,
self.thin,
self.search_parameter_keys,
self.outdir,
self.label,
)
# Generate the tau plot diagnostic
plot_tau(
self.tau_list_n,
self.tau_list,
self.search_parameter_keys,
self.outdir,
self.label,
self.tau_int,
self.convergence_inputs.autocorr_tau,
)
def check_iteration(
samples,
sampler,
convergence_inputs,
search_parameter_keys,
time_per_check,
beta_list,
tau_list,
tau_list_n,
):
""" Per-iteration logic to calculate the convergence check
Parameters
----------
convergence_inputs: bilby.core.sampler.ptemcee.ConvergenceInputs
A named tuple of the convergence checking inputs
search_parameter_keys: list
A list of the search parameter keys
time_per_check, tau_list, tau_list_n: list
Lists used for tracking the run
Returns
-------
stop: bool
A boolean flag, True if the stoping criteria has been met
burn: int
The number of burn-in steps to discard
thin: int
The thin-by factor to apply
tau_int: int
The integer estimated ACT
nsamples_effective: int
The effective number of samples after burning and thinning
"""
import emcee
ci = convergence_inputs
nwalkers, iteration, ndim = samples.shape
# Compute ACT tau for 0-temperature chains
tau_array = np.zeros((nwalkers, ndim))
for ii in range(nwalkers):
for jj, key in enumerate(search_parameter_keys):
if ci.ignore_keys_for_tau and ci.ignore_keys_for_tau in key:
continue
try:
tau_array[ii, jj] = emcee.autocorr.integrated_time(
samples[ii, :, jj], c=ci.autocorr_c, tol=0)[0]
except emcee.autocorr.AutocorrError:
tau_array[ii, jj] = np.inf
# Maximum over paramters, mean over walkers
tau = np.max(np.mean(tau_array, axis=0))
# Apply multiplicitive safety factor
tau = ci.safety * tau
# Store for convergence checking and plotting
beta_list.append(list(sampler.betas))
tau_list.append(list(np.mean(tau_array, axis=0)))
tau_list_n.append(iteration)
# Convert to an integer
tau_int = int(np.ceil(tau)) if not np.isnan(tau) else tau
if np.isnan(tau_int) or np.isinf(tau_int):
print_progress(
iteration, sampler, time_per_check, np.nan, np.nan,
np.nan, np.nan, False, convergence_inputs,
)
return False, np.nan, np.nan, np.nan, np.nan
# Calculate the effective number of samples available
nburn = int(ci.burn_in_nact * tau_int)
thin = int(np.max([1, ci.thin_by_nact * tau_int]))
samples_per_check = nwalkers / thin
nsamples_effective = int(nwalkers * (iteration - nburn) / thin)
# Calculate convergence boolean
converged = ci.nsamples < nsamples_effective
# Calculate fractional change in tau from previous iteration
check_taus = np.array(tau_list[-tau_int * ci.autocorr_tau :])
taus_per_parameter = check_taus[-1, :]
if not np.any(np.isnan(check_taus)):
frac = (taus_per_parameter - check_taus) / taus_per_parameter
max_frac = np.max(frac)
tau_usable = np.all(frac < ci.frac_threshold)
else:
max_frac = np.nan
tau_usable = False
if iteration < tau_int * ci.autocorr_tol or tau_int < ci.min_tau:
tau_usable = False
# Print an update on the progress
print_progress(
iteration,
sampler,
time_per_check,
nsamples_effective,
samples_per_check,
tau_int,
max_frac,
tau_usable,
convergence_inputs,
)
stop = converged and tau_usable
return stop, nburn, thin, tau_int, nsamples_effective
def print_progress(
iteration,
sampler,
time_per_check,
nsamples_effective,
samples_per_check,
tau_int,
max_frac,
tau_usable,
convergence_inputs,
):
# Setup acceptance string
acceptance = sampler.acceptance_fraction[0, :]
acceptance_str = "{:1.2f}->{:1.2f}".format(np.min(acceptance), np.max(acceptance))
# Setup tswap acceptance string
tswap_acceptance_fraction = sampler.tswap_acceptance_fraction
tswap_acceptance_str = "{:1.2f}->{:1.2f}".format(
np.min(tswap_acceptance_fraction), np.max(tswap_acceptance_fraction)
)
ave_time_per_check = np.mean(time_per_check[-3:])
time_left = (convergence_inputs.nsamples - nsamples_effective) * ave_time_per_check / samples_per_check
if time_left > 0:
time_left = str(datetime.timedelta(seconds=int(time_left)))
else:
time_left = "waiting on convergence"
sampling_time = datetime.timedelta(seconds=np.sum(time_per_check))
if max_frac >= 0:
tau_str = "{}(+{:0.2f})".format(tau_int, max_frac)
else:
tau_str = "{}({:0.2f})".format(tau_int, max_frac)
if tau_usable:
tau_str = "={}".format(tau_str)
else:
tau_str = "!{}".format(tau_str)
evals_per_check = sampler.nwalkers * sampler.ntemps * convergence_inputs.niterations_per_check
ncalls = "{:1.1e}".format(
convergence_inputs.niterations_per_check * iteration * sampler.nwalkers * sampler.ntemps)
eval_timing = "{:1.2f}ms/ev".format(1e3 * ave_time_per_check / evals_per_check)
samp_timing = "{:1.1f}ms/sm".format(1e3 * ave_time_per_check / samples_per_check)
print(
"{}| {}| nc:{}| a0:{}| swp:{}| n:{}<{}| tau{}| {}| {}".format(
iteration,
str(sampling_time).split(".")[0],
ncalls,
acceptance_str,
tswap_acceptance_str,
nsamples_effective,
convergence_inputs.nsamples,
tau_str,
eval_timing,
samp_timing,
),
flush=True,
)
def checkpoint(
iteration,
outdir,
label,
nsamples_effective,
sampler,
nburn,
thin,
search_parameter_keys,
resume_file,
log_likelihood_array,
chain_array,
pos0,
beta_list,
tau_list,
tau_list_n,
time_per_check,
):
logger.info("Writing checkpoint and diagnostics")
ndim = sampler.dim
# Store the samples if possible
if nsamples_effective > 0:
filename = "{}/{}_samples.txt".format(outdir, label)
samples = np.array(chain_array)[:, nburn : iteration : thin, :].reshape(
(-1, ndim)
)
df = pd.DataFrame(samples, columns=search_parameter_keys)
df.to_csv(filename, index=False, header=True, sep=" ")
# Pickle the resume artefacts
sampler_copy = copy.copy(sampler)
del sampler_copy.pool
data = dict(
iteration=iteration,
sampler=sampler_copy,
beta_list=beta_list,
tau_list=tau_list,
tau_list_n=tau_list_n,
time_per_check=time_per_check,
log_likelihood_array=log_likelihood_array,
chain_array=chain_array,
pos0=pos0,
)
with open(resume_file, "wb") as file:
dill.dump(data, file, protocol=4)
del data, sampler_copy
logger.info("Finished writing checkpoint")
def plot_walkers(walkers, nburn, thin, parameter_labels, outdir, label):
""" Method to plot the trace of the walkers in an ensemble MCMC plot """
nwalkers, nsteps, ndim = walkers.shape
idxs = np.arange(nsteps)
fig, axes = plt.subplots(nrows=ndim, ncols=2, figsize=(8, 3 * ndim))
scatter_kwargs = dict(lw=0, marker="o", markersize=1, alpha=0.05,)
# Plot the burn-in
for i, (ax, axh) in enumerate(axes):
ax.plot(
idxs[: nburn + 1],
walkers[:, : nburn + 1, i].T,
color="C1",
**scatter_kwargs
)
# Plot the thinned posterior samples
for i, (ax, axh) in enumerate(axes):
ax.plot(
idxs[nburn::thin],
walkers[:, nburn::thin, i].T,
color="C0",
**scatter_kwargs
)
axh.hist(walkers[:, nburn::thin, i].reshape((-1)), bins=50, alpha=0.8)
axh.set_xlabel(parameter_labels[i])
ax.set_ylabel(parameter_labels[i])
fig.tight_layout()
filename = "{}/{}_checkpoint_trace.png".format(outdir, label)
fig.savefig(filename)
plt.close(fig)
def plot_tau(
tau_list_n, tau_list, search_parameter_keys, outdir, label, tau, autocorr_tau
):
fig, ax = plt.subplots()
for i, key in enumerate(search_parameter_keys):
ax.plot(tau_list_n, np.array(tau_list)[:, i], label=key)
ax.axvline(tau_list_n[-1] - tau * autocorr_tau)
ax.set_xlabel("Iteration")
ax.set_ylabel(r"$\langle \tau \rangle$")
ax.legend()
fig.savefig("{}/{}_checkpoint_tau.png".format(outdir, label))
plt.close(fig)
def compute_evidence(sampler, log_likelihood_array, outdir, label, nburn, thin,
iteration, make_plots=True):
""" Computes the evidence using thermodynamic integration """
betas = sampler.betas
# We compute the evidence without the burnin samples, but we do not thin
lnlike = log_likelihood_array[:, :, nburn : iteration]
mean_lnlikes = np.mean(np.mean(lnlike, axis=1), axis=1)
mean_lnlikes = mean_lnlikes[::-1]
betas = betas[::-1]
if any(np.isinf(mean_lnlikes)):
logger.warning(
"mean_lnlikes contains inf: recalculating without"
" the {} infs".format(len(betas[np.isinf(mean_lnlikes)]))
)
idxs = np.isinf(mean_lnlikes)
mean_lnlikes = mean_lnlikes[~idxs]
betas = betas[~idxs]
lnZ = np.trapz(mean_lnlikes, betas)
z1 = np.trapz(mean_lnlikes, betas)
z2 = np.trapz(mean_lnlikes[::-1][::2][::-1], betas[::-1][::2][::-1])
lnZerr = np.abs(z1 - z2)
if make_plots:
fig, (ax1, ax2) = plt.subplots(nrows=2, figsize=(6, 8))
ax1.semilogx(betas, mean_lnlikes, "-o")
ax1.set_xlabel(r"$\beta$")
ax1.set_ylabel(r"$\langle \log(\mathcal{L}) \rangle$")
min_betas = []
evidence = []
for i in range(int(len(betas) / 2.0)):
min_betas.append(betas[i])
evidence.append(np.trapz(mean_lnlikes[i:], betas[i:]))
ax2.semilogx(min_betas, evidence, "-o")
ax2.set_ylabel(
r"$\int_{\beta_{min}}^{\beta=1}" + r"\langle \log(\mathcal{L})\rangle d\beta$",
size=16,
)
ax2.set_xlabel(r"$\beta_{min}$")
plt.tight_layout()
fig.savefig("{}/{}_beta_lnl.png".format(outdir, label))
return lnZ, lnZerr
def do_nothing_function():
""" This is a do-nothing function, we overwrite the likelihood and prior elsewhere """
pass
likelihood = None
priors = None
def init(likelihood_in, priors_in):
global likelihood
global priors
likelihood = likelihood_in
priors = priors_in
class LikePriorEvaluator(object):
"""
This class is copied and modified from ptemcee.LikePriorEvaluator, see
https://github.com/willvousden/ptemcee for the original version
We overwrite the logl and logp methods in order to improve the performance
when using a MultiPool object: essentially reducing the amount of data
transfer overhead.
"""
def __init__(self, search_parameter_keys, use_ratio=False):
self.search_parameter_keys = search_parameter_keys
self.use_ratio = use_ratio
def logl(self, v_array):
parameters = {key: v for key, v in zip(self.search_parameter_keys, v_array)}
if priors.evaluate_constraints(parameters) > 0:
likelihood.parameters.update(parameters)
if self.use_ratio:
return likelihood.log_likelihood() - likelihood.noise_log_likelihood()
else:
return likelihood.log_likelihood()
else:
return np.nan_to_num(-np.inf)
def logp(self, v_array):
params = {key: t for key, t in zip(self.search_parameter_keys, v_array)}
return priors.ln_prob(params)
def __call__(self, x):
+4
lp = self.logp(x)
if np.isnan(lp):
raise ValueError("Prior function returned NaN.")
if lp == float("-inf"):
# Can't return -inf, since this messes with beta=0 behaviour.
ll = 0
else:
ll = self.logl(x)
if np.isnan(ll).any():
raise ValueError("Log likelihood function returned NaN.")
return ll, lp
Loading