Skip to content
Snippets Groups Projects

Add a mean-log-likelihood method to improve the ACT estimation

Merged Gregory Ashton requested to merge add-mean-log-like-to-ptemcee into master
All threads resolved!
1 file
+ 7
7
Compare changes
  • Side-by-side
  • Inline
@@ -28,36 +28,36 @@ class TestPTEmcee(unittest.TestCase):
def test_default_kwargs(self):
expected = dict(
ntemps=20,
nwalkers=200,
ntemps=10,
nwalkers=100,
Tmax=None,
betas=None,
a=2.0,
adaptation_lag=10000,
adaptation_time=100,
random=None,
adapt=True,
adapt=False,
swap_ratios=False,
)
self.assertDictEqual(expected, self.sampler.kwargs)
def test_translate_kwargs(self):
expected = dict(
ntemps=20,
nwalkers=200,
ntemps=10,
nwalkers=100,
Tmax=None,
betas=None,
a=2.0,
adaptation_lag=10000,
adaptation_time=100,
random=None,
adapt=True,
adapt=False,
swap_ratios=False,
)
for equiv in bilby.core.sampler.base_sampler.MCMCSampler.nwalkers_equiv_kwargs:
new_kwargs = self.sampler.kwargs.copy()
del new_kwargs["nwalkers"]
new_kwargs[equiv] = 200
new_kwargs[equiv] = 100
self.sampler.kwargs = new_kwargs
self.assertDictEqual(expected, self.sampler.kwargs)
Loading