Skip to content
Snippets Groups Projects
Commit 08ed03e9 authored by Patrick Godwin's avatar Patrick Godwin
Browse files

move ranking stat compression algorithm from...

move ranking stat compression algorithm from gstlal_inspiral_compress_ranking_stat to HorizonHistories.compress()
parent 41e9e785
No related branches found
No related tags found
No related merge requests found
......@@ -27,10 +27,8 @@
#
import math
from optparse import OptionParser
import sys
import numpy
from ligo.lw import utils as ligolw_utils
from gstlal import far
......@@ -115,38 +113,11 @@ for filename in filenames:
# to ensure no problems modifying the object being iterated over
#
abs_ln_thresh = math.log1p(options.threshold)
for instrument, horizon_history in list(rankingstat.numerator.horizon_history.items()):
# GPS time / distance pairs
items = horizon_history.items()
if options.remove_horizon_deviations:
values = numpy.array(items)[:,1]
mean_horizon = values[values!=0].mean()
items = [item for item in items if item[1] < (mean_horizon * (1. + options.deviation_percent))]
# compress array
j = 1
for i in range(1, len(items) - 1):
values = items[j - 1][1], items[i][1], items[i + 1][1]
# remove distances that are non-zero and differ
# fractionally from both neighbours by less than
# the selected threshold. always keep the first
# and last values
if values[0] > 0. and values[1] > 0. and values[2] > 0. and abs(math.log(values[1] / values[0])) < abs_ln_thresh and abs(math.log(values[1] / values[2])) < abs_ln_thresh:
continue
# remove distances that are 0 and surrounded by 0
# on both sides (basically the same as the last
# test, but we can't take log(0)).
if values == (0., 0., 0.):
continue
items[j] = items[i]
j += 1
del items[j:]
if options.verbose:
print >>sys.stderr, "\"%s\": %s horizon history reduced to %.3g%% of original size" % (filename, instrument, 100. * j / (i + 1.))
# replace
rankingstat.numerator.horizon_history[instrument] = type(horizon_history)(items)
rankingstat.numerator.horizon_history.compress(
threshold = options.threshold,
remove_deviations = options.remove_horizon_deviations,
deviation_percent = options.deviation_percent
)
#
# re-insert into XML tree
......
......@@ -575,6 +575,50 @@ class HorizonHistories(dict):
"""
return dict((key, value.weighted_mean(*args, **kwargs)) for key, value in self.items())
def compress(self, threshold = 0.03, remove_deviations = False, deviation_percent = 0.50, verbose = False):
"""
Remove distances that are non-zero and differ
fractionally from both neighbours by less than
the selected threshold.
Also allows removal of uncharacteristic horizon
distance values.
"""
abs_ln_thresh = math.log1p(threshold)
for instrument, horizon_history in list(self.items()):
# GPS time / distance pairs
items = horizon_history.items()
if remove_deviations:
values = numpy.array(items)[:,1]
mean_horizon = values[values!=0].mean()
items = [item for item in items if item[1] < (mean_horizon * (1. + deviation_percent))]
# compress array
j = 1
for i in range(1, len(items) - 1):
values = items[j - 1][1], items[i][1], items[i + 1][1]
# remove distances that are non-zero and differ
# fractionally from both neighbours by less than
# the selected threshold. always keep the first
# and last values
if (values[0] > 0. and values[1] > 0. and values[2] > 0. and
abs(math.log(values[1] / values[0])) < abs_ln_thresh and
abs(math.log(values[1] / values[2])) < abs_ln_thresh):
continue
# remove distances that are 0 and surrounded by 0
# on both sides (basically the same as the last
# test, but we can't take log(0)).
if values == (0., 0., 0.):
continue
items[j] = items[i]
j += 1
del items[j:]
if verbose:
print >>sys.stderr, "\"%s\": %s horizon history reduced to %.3g%% of original size" % (filename, instrument, 100. * j / (i + 1.))
# replace
self[instrument] = type(horizon_history)(items)
@classmethod
def from_xml(cls, xml, name):
xml = [elem for elem in xml.getElementsByTagName(ligolw.LIGO_LW.tagName) if elem.hasAttribute(u"Name") and elem.Name == u"%s:horizonhistories" % name]
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment