Skip to content
Snippets Groups Projects
Commit 47c98b0c authored by Patrick Godwin's avatar Patrick Godwin
Browse files

gstlal_feature_extractor_template_overlap + idq_utils.py: fixed bug in...

gstlal_feature_extractor_template_overlap + idq_utils.py: fixed bug in template generation causing missing templates, changed way templates are produced as a result, propagated changes to template validation code
parent ecbb504d
No related branches found
No related tags found
No related merge requests found
......@@ -233,7 +233,6 @@ if __name__ == '__main__':
aggregator.makedir(options.output_dir)
# common parameters we will use throughout
#max_samp_rate = 2048
max_samp_rate = 8192
min_samp_rate = 32
n_rates = int(numpy.log2(max_samp_rate/min_samp_rate) + 1)
......@@ -243,22 +242,20 @@ if __name__ == '__main__':
# generate templates for each rate considered
rates = [min_samp_rate*2**i for i in range(n_rates)]
waveforms = {}
templates = {}
basis_params = {}
for rate in rates:
flow = rate/4.*0.8
fhigh = rate/2.*0.8
qhigh = options.qhigh
qlow = 3.3166
if options.waveform == 'sine_gaussian':
waveforms[rate] = idq_utils.SineGaussianGenerator((flow, fhigh), (qlow, qhigh), rate, mismatch = options.mismatch)
elif options.waveform == 'half_sine_gaussian':
waveforms[rate] = idq_utils.HalfSineGaussianGenerator((flow, fhigh), (qlow, qhigh), rate, mismatch = options.mismatch)
else:
raise NotImplementedError
basis_params[rate] = waveforms[rate].parameter_grid
templates[rate] = [waveform for waveform in waveforms[rate].generate_templates(quadrature=False)]
downsample_factor = 0.8
qhigh = options.qhigh
qlow = 3.3166
fhigh = max_samp_rate / 2.
flow = min_samp_rate / 4.
if options.waveform == 'sine_gaussian':
waveforms = idq_utils.SineGaussianGenerator((flow, fhigh), (qlow, qhigh), rates, mismatch = options.mismatch, downsample_factor=downsample_factor)
elif options.waveform == 'half_sine_gaussian':
waveforms = idq_utils.HalfSineGaussianGenerator((flow, fhigh), (qlow, qhigh), rates, mismatch = options.mismatch, downsample_factor=downsample_factor)
else:
raise NotImplementedError
basis_params = waveforms.parameter_grid
templates = {rate: [waveform for waveform in waveforms.generate_templates(rate, quadrature=False)] for rate in rates}
# get all templates and params
all_templates = list(itertools.chain(*templates.values()))
......@@ -267,11 +264,16 @@ if __name__ == '__main__':
if options.verbose:
print >>sys.stderr, "Creating template overlaps..."
# zero pad templates to make them the same length
max_sample_pts = max(len(template) for template in all_templates)
all_templates = [numpy.pad(template, ((max_sample_pts - len(template)) // 2, (max_sample_pts - len(template)) // 2), 'constant') for template in all_templates]
# calculate overlap for each template and find maximum
overlaps = []
for this_template in all_templates:
overlaps.append(max([numpy.dot(this_template,template) for template in all_templates if not numpy.array_equal(template, this_template)]))
print >>sys.stderr, "total number of templates: %d" % len(all_templates)
print >>sys.stderr, "min overlap specified: %f" % (1 - options.mismatch)
print >>sys.stderr, "max template overlap: %f" % max(overlaps)
print >>sys.stderr, "min template overlap: %f" % min(overlaps)
......@@ -291,13 +293,15 @@ if __name__ == '__main__':
print >>sys.stderr, "Creating waveform plots..."
for rate in rates:
for template_id, template in enumerate(random.sample(templates[rate], num_samples)):
#for template_id, template in enumerate(random.sample(templates[rate], num_samples)):
for template_id in random.sample(numpy.arange(len(templates[rate])), num_samples):
waveform_params = ["%s: %.3f" % (name, param) for param, name in zip(basis_params[rate][template_id], param_names)]
template = templates[rate][template_id]
if options.verbose:
print >>sys.stderr, "\tCreating waveform plot with parameters: %s" % repr(waveform_params)
series_fig = plot_waveform(waveforms[rate].times, template, waveform_type, waveform_params)
series_fig = plot_waveform(waveforms.times[rate], template, waveform_type, waveform_params)
fname = 'plot_%s_%s-timeseries.png' % (str(rate).zfill(4), str(template_id).zfill(4))
plot_paths.append((template_id*int(rate),fname))
series_fig.savefig(os.path.join(options.output_dir, fname))
......
......@@ -25,6 +25,8 @@
####################
import bisect
from collections import defaultdict
import glob
import logging
import os
......@@ -296,32 +298,59 @@ class HalfSineGaussianGenerator(object):
"""
Generates half sine gaussian templates based on a f, Q range and a sampling frequency.
"""
def __init__(self, f_range, q_range, f_samp, mismatch=0.2, tolerance=5e-3):
def __init__(self, f_range, q_range, rates, mismatch=0.2, tolerance=5e-3, downsample_factor=0.8):
### define parameter range
self.f_low, self.f_high = f_range
self.f_low, self.f_high = (downsample_factor * f_range[0], downsample_factor * f_range[1])
self.q_low, self.q_high = q_range
self.f_samp = f_samp
### define grid spacing and edge rolloff for templates
self.mismatch = mismatch
self.tol = tolerance
### determine how to scale down templates considered
### in frequency band to deal with low pass rolloff
self.downsample_factor = downsample_factor
### determine frequency bands considered
self.rates = sorted(set(rates))
### determine lower frequency limits for rate conversion based on downsampling factor
self.freq_breakpoints = [self.downsample_factor * rate / 2. for rate in self.rates[:-1]]
### define grid and template duration
self.parameter_grid = [(f, q, self.duration(f, q)) for f, q in self.generate_f_q_grid(self.f_low, self.f_high, self.q_low, self.q_high)]
self.max_duration = max(duration for f, q, duration in self.parameter_grid)
self.parameter_grid = defaultdict(list)
for rate, f, q in self.generate_f_q_grid(self.f_low, self.f_high, self.q_low, self.q_high):
self.parameter_grid[rate].append((f, q, self.duration(f, q)))
self.max_duration = {rate: max(duration for f, q, duration in parameters) for rate, parameters in self.parameter_grid.items()}
### determine rest of waveform properties
self.phases = [0., numpy.pi/2.]
self.times = numpy.linspace(-self.max_duration, 0, int(numpy.ceil(self.max_duration*self.f_samp)), endpoint=True)
self.latency = 0
self.times = {rate: numpy.linspace(-self.max_duration[rate], 0, self.round_to_next_odd(self.max_duration[rate]*rate), endpoint=True) for rate in self.rates}
self.latency = {rate: 0 for rate in self.rates}
def frequency_to_rate(self, frequency):
"""
Maps a frequency to the correct sampling rate considered.
"""
idx = bisect.bisect(self.freq_breakpoints, frequency)
return self.rates[idx]
def round_to_next_odd(self, n):
return int(numpy.ceil(n) // 2 * 2 + 1)
def generate_templates(self, quadrature = True):
def generate_templates(self, rate, quadrature = True):
"""
generate all half sine gaussian templates corresponding to a parameter range and template duration
for a given sampling rate.
"""
for f, q in self.generate_f_q_grid(self.f_low, self.f_high, self.q_low, self.q_high):
for f, q, _ in self.parameter_grid[rate]:
if quadrature:
for phase in self.phases:
yield self.waveform(f, q, phase)
else:
yield self.waveform(f, q, self.phases[0])
yield self.waveform(f, q, self.phases[0], rate)
def duration(self, f, q):
"""
......@@ -329,18 +358,16 @@ class HalfSineGaussianGenerator(object):
"""
return 0.5 * (q/(2.*numpy.pi*f)) * numpy.log(1./self.tol)
def waveform(self, f, q, phase):
def waveform(self, f, q, phase, rate):
"""
construct half sine gaussian waveforms that taper to tolerance at edges of window
f is the central frequency of the waveform
"""
dt = self.times[1] - self.times[0]
rate = 1./dt
assert f < rate/2.
# phi is the central frequency of the sine gaussian
tau = q/(2.*numpy.pi*f)
template = numpy.cos(2.*numpy.pi*f*self.times + phase)*numpy.exp(-1.*self.times**2./tau**2.)
template = numpy.cos(2.*numpy.pi*f*self.times[rate] + phase)*numpy.exp(-1.*self.times[rate]**2./tau**2.)
# normalize sine gaussians to have unit length in their vector space
inner_product = numpy.sum(template*template)
......@@ -369,23 +396,26 @@ class HalfSineGaussianGenerator(object):
def generate_f_q_grid(self, f_min, f_max, q_min, q_max):
"""
Generates (f, Q) pairs based on f, Q ranges
Generates (f_samp, f, Q) pairs based on f, Q ranges
"""
for q in self.generate_q_values(q_min, q_max):
num_f = self.num_f_templates(f_min, f_max, q)
for l in range(num_f):
f = f_min * (f_max/f_min)**( (0.5+l) /num_f)
if f < f_max / (1 + (numpy.sqrt(11)/q)):
yield (f, q)
rate = self.frequency_to_rate(f)
if f < (rate/2) / (1 + (numpy.sqrt(11)/q)):
yield rate, f, q
elif rate != max(self.rates):
yield (2 * rate), f, q
class SineGaussianGenerator(HalfSineGaussianGenerator):
"""
Generates sine gaussian templates based on a f, Q range and a sampling frequency.
"""
def __init__(self, f_range, q_range, f_samp, mismatch=0.2, tolerance=5e-3):
super(SineGaussianGenerator, self).__init__(f_range, q_range, f_samp, mismatch=mismatch, tolerance=tolerance)
self.times = numpy.linspace(-self.max_duration/2., self.max_duration/2., int(numpy.ceil(self.max_duration*self.f_samp)), endpoint=True)
self.latency = self.max_duration / 2.
def __init__(self, f_range, q_range, rates, mismatch=0.2, tolerance=5e-3, downsample_factor=0.8):
super(SineGaussianGenerator, self).__init__(f_range, q_range, rates, mismatch=mismatch, tolerance=tolerance, downsample_factor=0.8)
self.times = {rate: numpy.linspace(-self.max_duration[rate]/2., self.max_duration[rate]/2., self.round_to_next_odd(self.max_duration[rate]*rate), endpoint=True) for rate in self.rates}
self.latency = {rate: self.max_duration[rate] / 2. for rate in self.rates}
def duration(self, f, q):
"""
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment