Skip to content
Snippets Groups Projects
Commit 722713c2 authored by Aaron Viets's avatar Aaron Viets
Browse files

calibration plotting script updates

parent 832a8116
No related branches found
No related tags found
No related merge requests found
Pipeline #51579 failed
#!/usr/bin/env python
import matplotlib
matplotlib.rcParams['font.family'] = 'Times New Roman'
matplotlib.rcParams['font.size'] = 14
matplotlib.rcParams['legend.fontsize'] = 10
matplotlib.rcParams['mathtext.default'] = 'regular'
font = {'fontname' : 'Times New Roman'}
matplotlib.use('Agg')
from gwpy.timeseries import TimeSeriesDict
from gwpy.timeseries import TimeSeries
import glob
from math import pi
from gwpy.plotter import BodePlot
from gwpy.plot import BodePlot
import numpy
from optparse import OptionParser, Option
matplotlib.rcParams.update({'font.size': 14})
parser = OptionParser()
parser.add_option("--ifo", metavar = "name", help = "Name of the IFO")
parser.add_option("--gps-start-time", metavar = "seconds", help = "Set the GPS start time.")
parser.add_option("--gps-end-time", metavar = "seconds", help = "Set the GPS end time.")
parser.add_option("--raw-frame-cache", metavar = "name", help = "Raw frame cache file")
parser.add_option("--hoft-frame-cache", metavar = "name", help = "h(t) frame cache file.")
parser.add_option("--hoft-channel-name", metavar = "name", default = "GDS-CALIB_STRAIN", help = "Channel name for h(t) channel in frames. (Default = GDS-CALIB_STRAIN)")
parser.add_option("--analyze-additional-hoft-channel", action="store_true", help = "Set this option to analyze an additional h(t) channel")
parser.add_option("--additional-hoft-channel-name", metavar = "name", default = "DCS-CALIB_STRAIN", help = "Channel name for additional h(t) channel frames. (Default = DCS-CALIB_STRAIN)")
parser.add_option("--additional-hoft-frame-cache", metavar = "name", help = "additional h(t) frame cache file.")
parser.add_option("--calcs-channel-name", metavar = "name", default = "CAL-DELTAL_EXTERNAL_DQ", help = "Channel name for h(t) channel in raw frames. (Default = CAL-DELTAL_EXTERNAL_DQ)")
parser.add_option("--filename-suffix", type = str, default = "", help = "Suffix to add to the end of filenames")
parser.add_option("--frame-cache-list", metavar = "list", help = "Comma-separated list of frame cache files")
parser.add_option("--channel-list", metavar = "list", help = "Comma-separated list of channel names for ASD data")
parser.add_option("--ASD-fmin", metavar = "Hz", type = float, default = 10.0, help = "Minimum frequency for horizontal axis of ASD plot")
parser.add_option("--ASD-fmax", metavar = "Hz", type = float, default = 8192.0, help = "Maximum frequency for horizontal axis of ASD plot")
parser.add_option("--ASD-min", metavar = "Hz", type = float, default = 1e-24, help = "Minimum value for vertical axis of ASD plot")
parser.add_option("--ASD-max", metavar = "Hz", type = float, default = 1e-18, help = "Maximum value for vertical axis of ASD plot")
parser.add_option("--ratio-fmin", metavar = "Hz", type = float, default = 10.0, help = "Minimum frequency for horizontal axis of ASD ratio plot")
parser.add_option("--ratio-fmax", metavar = "Hz", type = float, default = 5000.0, help = "Maximum frequency for horizontal axis of ASD ratio plot")
parser.add_option("--ratio-min", metavar = "Hz", type = float, default = 0.7, help = "Minimum value for vertical axis of ASD ratio plot")
parser.add_option("--ratio-max", metavar = "Hz", type = float, default = 1.3, help = "Maximum value for vertical axis of ASD ratio plot")
parser.add_option("--ASD-plot-title", metavar = "name", type = str, default = "", help = "Title of ASD plot, to appear above plot. Default is no title")
parser.add_option("--ratio-plot-title", metavar = "name", type = str, default = "", help = "Title of ASD ratio plot, to appear above plot. Default is no title")
parser.add_option("--write-ASD-txt", action="store_true", help = "If set, tst files will be written with the ASDs")
parser.add_option("--filename-suffix", metavar = "name", type = str, default = "", help = "Suffix to add to the end of filenames")
options, filenames = parser.parse_args()
ifo = options.ifo
start_time = int(options.gps_start_time)
end_time = int(options.gps_end_time)
frame_cache_list = options.frame_cache_list.split(',')
channel_list = options.channel_list.split(',')
if len(frame_cache_list) != len(channel_list):
raise ValueError("frame-cache-list and channel-list must be the same length!")
ASD_fmin = float(options.ASD_fmin)
ASD_fmax = float(options.ASD_fmax)
ASD_min = float(options.ASD_min)
ASD_max = float(options.ASD_max)
ratio_fmin = float(options.ratio_fmin)
ratio_fmax = float(options.ratio_fmax)
ratio_min = float(options.ratio_min)
ratio_max = float(options.ratio_max)
ASD_title = options.ASD_plot_title
ratio_title = options.ratio_plot_title
filename_suffix = options.filename_suffix
# Grab CALCS data
calcs_data=TimeSeries.read(options.raw_frame_cache, '%s:%s' % (options.ifo, options.calcs_channel_name), start = start_time, end = end_time)
# Grab all data and make ASDs and ASD ratios
ASDs = []
ratios = []
for i in range(0, len(frame_cache_list)):
ASDs.append(TimeSeries.read(frame_cache_list[i], '%s:%s' % (ifo, channel_list[i]), start = start_time, end = end_time).asd(4, 2, method = 'lal_median'))
if i > 0:
ratios.append(ASDs[i] / ASDs[0])
# grab h(t) data
hoft_data = TimeSeries.read(options.hoft_frame_cache, "%s:%s" % (options.ifo, options.hoft_channel_name), start = start_time, end = end_time)
if options.analyze_additional_hoft_channel:
additional_hoft_data = TimeSeries.read(options.additional_hoft_frame_cache, "%s:%s" % (options.ifo, options.additional_hoft_channel_name), start = start_time, end = end_time)
# Save ASDs to text files if requested
if options.write_ASD_txt:
for i in range(0, len(ASDs)):
numpy.savetxt("%s_%s_ASD_%d_%d%s.txt" % (ifo, channel_list[i], start_time, end_time, options.filename_suffix), ASDs[i])
# FIXME: This is a hack to reformat the text file
asd_tmp = numpy.loadtxt("%s_%s_ASD_%d_%d%s.txt" % (ifo, channel_list[i], start_time, end_time, options.filename_suffix), ASDs[i])
asd_txt = []
freq = 0.0
for i in range(0, len(ASDs[i])):
asd_txt.append([freq, asd_tmp[i]])
freq = freq + 0.25
asd_txt = numpy.array(asd_txt)
numpy.savetxt("%s_%s_ASD_%d_%d%s.txt" % (ifo, channel_list[i], start_time, end_time, options.filename_suffix), asd_txt)
# make asds
calcs_asd = calcs_data.asd(4,2,method='lal_median')
hoft_asd = hoft_data.asd(4,2,method='lal_median')
# Plot ASDs
colors = ["blue", "green", "limegreen", "red", "yellow", "purple", "pink"]
if len(ASD_title):
plot = ASDs[0].plot(color = colors[0], title = "%s" % ASD_title, linewidth = 0.75, label = "%s:%s" % (ifo, channel_list[0].replace('_', '\_')))
else:
plot = ASDs[0].plot(color = colors[0], linewidth = 0.75, label = "%s:%s" % (ifo, channel_list[0].replace('_', '\_')))
numpy.savetxt("%s_CALIB_STRAIN_ASD_%d_%d%s.txt" % (options.ifo, start_time, end_time, options.filename_suffix), calcs_asd)
numpy.savetxt("%s_CALIB_STRAIN_CLEAN_ASD_%d_%d%s.txt" % (options.ifo, start_time, end_time, options.filename_suffix), hoft_asd)
ax = plot.gca()
for tick in ax.xaxis.get_major_ticks():
tick.label.set_fontsize(14)
for tick in ax.yaxis.get_major_ticks():
tick.label.set_fontsize(14)
ax.set_ylabel(r'Strain [Hz $^{-1/2}$]', fontsize = 14)
ax.set_xlabel('Frequency [Hz]', fontsize = 14)
ax.grid(True, which = "both", linestyle = ':', linewidth = 0.3, color = 'black')
leg = ax.legend(fancybox = True, fontsize = 10)
leg.get_frame().set_alpha(0.8)
ax.set_xlim(ASD_fmin, ASD_fmax)
ax.set_ylim(ASD_min, ASD_max)
calcs_asd_tmp = numpy.loadtxt("%s_CALIB_STRAIN_ASD_%d_%d%s.txt" % (options.ifo, start_time, end_time, options.filename_suffix))
hoft_asd_tmp = numpy.loadtxt("%s_CALIB_STRAIN_CLEAN_ASD_%d_%d%s.txt" % (options.ifo, start_time, end_time, options.filename_suffix))
for i in range(1, len(ASDs)):
ax = plot.gca()
ax.plot(ASDs[i], colors[i % 7], linewidth = 0.75, label = "%s:%s" % (ifo, channel_list[i].replace('_', '\_')))
leg = ax.legend(fancybox = True, fontsize = 10)
leg.get_frame().set_alpha(0.8)
calcs_asd_txt = []
hoft_asd_txt = []
freq = 0.0
for i in range(0, len(calcs_asd)):
calcs_asd_txt.append([freq, calcs_asd_tmp[i]])
hoft_asd_txt.append([freq, hoft_asd_tmp[i]])
freq = freq + 0.25
calcs_asd_txt = numpy.array(calcs_asd_txt)
hoft_asd_txt = numpy.array(hoft_asd_txt)
numpy.savetxt("%s_CALIB_STRAIN_ASD_%d_%d%s.txt" % (options.ifo, start_time, end_time, options.filename_suffix), calcs_asd_txt)
numpy.savetxt("%s_CALIB_STRAIN_CLEAN_ASD_%d_%d%s.txt" % (options.ifo, start_time, end_time, options.filename_suffix), hoft_asd_txt)
plot.save('%s_%s_%s_spectrum_comparison%s.png' % (ifo, start_time, end_time, options.filename_suffix))
plot.save('%s_%s_%s_spectrum_comparison%s.pdf' % (ifo, start_time, end_time, options.filename_suffix))
if options.analyze_additional_hoft_channel:
additional_hoft_asd = additional_hoft_data.asd(4,2)
# Plot ASD ratios
if len(ratios):
if len(ratio_title):
plot = ratios[0].plot(color = colors[1], title = "%s" % ratio_title, linewidth = 0.75, label = "%s:%s / %s:%s" % (ifo, channel_list[1].replace('_', '\_'), ifo, channel_list[0].replace('_', '\_')))
else:
plot = ratios[0].plot(color = colors[1], linewidth = 0.75, label = "%s:%s / %s:%s" % (ifo, channel_list[1].replace('_', '\_'), ifo, channel_list[0].replace('_', '\_')))
#plot spectrum
plot=calcs_asd.plot(label='CALCS h(t) ASD')
plot.gca().plot(hoft_asd,label='GDS h(t) ASD')
if options.analyze_additional_hoft_channel:
plot.gca().plot(additional_hoft_asd,label='DCS h(t) ASD')
ax = plot.gca()
ax.set_ylabel('Strain [Hz $^{-1/2}$]', fontname = 'Times', fontsize = 18)
ax.set_xlabel('Frequency [Hz]', fontname = 'Times', fontsize = 18)
ax.legend(['%s:GDS-CALIB\_STRAIN' % options.ifo, '%s:GDS-CALIB\_STRAIN\_CLEAN' % options.ifo, r'DCS h(t) ASD'], loc='upper right', fontsize='small')
ax.set_xlim(0.5,8192)
ax.set_ylim(1e-24,1e-16)
plot.save('%s_%s_%s_spectrum_comparison%s.png' % (options.ifo, start_time, end_time, options.filename_suffix))
ax = plot.gca()
for tick in ax.xaxis.get_major_ticks():
tick.label.set_fontsize(14)
for tick in ax.yaxis.get_major_ticks():
tick.label.set_fontsize(14)
ax.set_ylabel('ASD ratio', fontsize = 14)
ax.set_xlabel('Frequency [Hz]', fontsize = 14)
ax.grid(True, which = "both", linestyle = ':', linewidth = 0.3, color = 'black')
leg = ax.legend(fancybox = True, fontsize = 10)
leg.get_frame().set_alpha(0.8)
ax.set_xlim(ratio_fmin, ratio_fmax)
ax.set_ylim(ratio_min, ratio_max)
for i in range(1, len(ratios)):
ax = plot.gca()
ax.plot(ratios[i], colors[(i + 1) % 7], linewidth = 0.75, label = "%s:%s / %s:%s" % (ifo, channel_list[i + 1].replace('_', '\_'), ifo, channel_list[0].replace('_', '\_')))
leg = ax.legend(fancybox = True, fontsize = 10)
leg.get_frame().set_alpha(0.8)
plot.save('%s_%s_%s_ASD_ratios%s.png' % (options.ifo, start_time, end_time, options.filename_suffix))
plot.save('%s_%s_%s_ASD_ratios%s.pdf' % (options.ifo, start_time, end_time, options.filename_suffix))
diff1 = calcs_asd / hoft_asd
if options.analyze_additional_hoft_channel:
diff2 = calcs_asd / additional_hoft_asd
diff3 = hoft_asd / additional_hoft_asd
plot = diff1.plot(label="ASD ratios")
if options.analyze_additional_hoft_channel:
plot.gca().plot(diff2)
plot.gca().plot(diff3)
ax = plot.gca()
ax.set_ylabel('Strain [Hz $^{-1/2}$]', fontname = 'Times', fontsize = 18)
ax.set_xlabel('Frequency [Hz]', fontname = 'Times', fontsize = 18)
ax.legend([r'CALCS h(t) ASD / GDS h(t) ASD', r'CALCS h(t) ASD / DCS h(t) ASD', r'GDS h(t) ASD / DCS h(t) ASD'], loc='upper right', fontsize='small')
ax.set_xlim(0.5,5000)
ax.set_ylim(0.0, 10)
plot.save('%s_%s_%s_ASD_residual%s.png' % (options.ifo, start_time, end_time, options.filename_suffix))
......@@ -45,7 +45,6 @@ import glob
import matplotlib.pyplot as plt
from optparse import OptionParser, Option
import ConfigParser
parser = OptionParser()
......@@ -58,6 +57,7 @@ parser.add_option("--integration-time", metavar = "seconds", type = int, default
parser.add_option("--stride", metavar = "seconds", type = int, default = 32, help = "Time-separation in seconds between consecutive values of range")
parser.add_option("--range-min", metavar = "Mpc", type = float, default = 0.0, help = "Minimum value for range on plot")
parser.add_option("--range-max", metavar = "Mpc", type = float, default = 160.0, help = "Maximum value for range on plot")
parser.add_option("--make-title", action = "store_true", help = "If set, a title will be added to the BNS range plot.")
options, filenames = parser.parse_args()
......@@ -114,19 +114,20 @@ for i in range(0, len(channel_list)):
ranges[i].append(BNS_range)
medians.append(numpy.median(ranges[i]))
stds.append(numpy.std(ranges[i]))
# Make plots
colors = ['b', 'y', 'r', 'c', 'm', 'g'] # Hopefully the user will not want to plot more than six datasets on one plot.
plt.figure(figsize = (15, 10))
colors = ["blue", "green", "limegreen", "red", "yellow", "purple", "pink"] # Hopefully the user will not want to plot more than 7 datasets on one plot.
plt.figure(figsize = (12, 8))
for i in range(0, len(channel_list)):
plt.plot(times, ranges[i], colors[i % 6], linewidth = 0.5, label = r'%s [median = %0.1f Mpc, $\sigma$ = %0.1f Mpc]' % (channel_list[i].replace('_', '\_'), medians[i], stds[i]))
plt.title("%s binary neutron star inspiral range" % ifo)
plt.gcf().subplots_adjust(bottom=0.15)
plt.plot(times, ranges[i], colors[i % 6], linewidth = 1.5, label = r'%s:%s [median = %0.1f Mpc, $\sigma$ = %0.1f Mpc]' % (ifo, channel_list[i].replace('_', '\_'), medians[i], stds[i]))
if options.make_title:
plt.title("%s binary neutron star inspiral range" % ifo)
plt.ylabel('Angle-averaged range [Mpc]')
plt.xlabel('Time [%s] from %s UTC (%d)' % (t_unit, time.strftime("%b %d %Y %H:%M:%S", time.gmtime(gps_start_time + 315964782)), gps_start_time))
plt.xlabel('Time [%s] from %s UTC' % (t_unit, time.strftime("%b %d %Y %H:%M:%S", time.gmtime(gps_start_time + 315964782))))
plt.ylim(range_min, range_max)
plt.grid(True)
leg = plt.legend(fancybox = True)
leg.get_frame().set_alpha(0.5)
leg.get_frame().set_alpha(0.8)
plt.savefig('%s_BNS_range_%d-%d.png' % (ifo, int(gps_start_time), int(dur)))
plt.savefig('%s_BNS_range_%d-%d.pdf' % (ifo, int(gps_start_time), int(dur)))
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment