Plot horizon distance from ranking statistics
1 unresolved thread
1 unresolved thread
Compare changes
- Koh Ueno authored
@@ -50,345 +50,345 @@ __date__ = "" # FIXME
The program gstlal_inspiral_plot_sensitivity computes the sensitive volume of a CBC search from input databases containing triggers from simulation experiments. These triggers need to be ranked by false alarm rate, the detection statistic used in S6 searches. Then injections which register a trigger louder than the loudest event, by false alarm rate, are considered found. All others are considered missed. The efficiency of detecting an event depends on the source parameters, such as its component masses, distance, spin, inclination, sky position, etc. However, lalapps_cbc_svim only considers the dependency of the efficiency on distance and mass, marginalizing over the other parameters. Injections are binned in distance and mass and the estimated efficiency is integrated over distance to convert the efficiency into a physical volume.
parser.add_option("-t", "--tmp-space", metavar = "path", help = "Path to a directory suitable for use as a work area while manipulating the database file. The database file will be worked on in this directory, and then moved to the final location when complete. This option is intended to improve performance when running in a networked environment, where there might be a local disk with higher bandwidth than is available to the filesystem on which the final output will reside.")
parser.add_option("-t", "--tmp-space", metavar = "path", help = "Path to a directory suitable for use as a work area while manipulating the database file. The database file will be worked on in this directory, and then moved to the final location when complete. This option is intended to improve performance when running in a networked environment, where there might be a local disk with higher bandwidth than is available to the filesystem on which the final output will reside.")
@@ -400,13 +400,13 @@ cache_list = []
@@ -434,173 +434,173 @@ snrs = numpy.logspace(numpy.log10(opts.min_snr), numpy.log10(opts.max_snr), opts