Calculate `log_prior` when constructing result posterior
The current result posterior output by parallel-bilby
(using Dynesty
) is lacking of the log_prior
evaluation (result.posterior[‘log_prior’]
returns an array of None
).
This is because the result.samples_to_posterior
function requires an explicit input of priors
to trigger the calculations of log_prior
, (e.g.: bilby.core.sampler.__init__.py
)
This PR attempts to solve this issue by adding priors=result.priors
to the arguments when calling the function.