... | ... | @@ -4,6 +4,48 @@ To calculate the non-evolved remnant fits, we call the functions in `lalinferenc |
|
|
|
|
|
The conversions are handled in by the [`pesummary.gw.file.conversions` module](https://git.ligo.org/lscsoft/pesummary/-/blob/master/pesummary/gw/file/conversions.py) and specifically the [`pesummary.gw.file.conversion._Conversion` class](https://git.ligo.org/lscsoft/pesummary/-/blob/master/pesummary/gw/file/conversions.py#L534).
|
|
|
|
|
|
To check the samples produced by PESummary are correct, we compared them to cbcBayesPostProc. We copied the following files from HAWK to CIT:
|
|
|
|
|
|
```bash
|
|
|
$ rsync -avz --rsh="gsissh" ligo.gravity.cf.ac.uk:/home/sebastian.khan/public_html/LVC/projects/o3/s190521g/run2-8s/1242442967.4472656-333631/H1L1V1/posterior_samples.dat .
|
|
|
|
|
|
$ rsync -avz --rsh="gsissh" ligo.gravity.cf.ac.uk:/home/sebastian.khan/projects/o3/s190521g/paper-runs/run2-8s/run/posterior_samples/posterior_H1L1V1_1242442967.4472656-333631.hdf5 .
|
|
|
```
|
|
|
|
|
|
We then ran the following script:
|
|
|
|
|
|
```python
|
|
|
from pesummary.gw.file.read import read
|
|
|
from pesummary.gw.file.standard_names import lalinference_map
|
|
|
import numpy as np
|
|
|
|
|
|
lalinf_samples = np.genfromtxt("/home/charlie.hoy/projects/pesummary_review/remnant_fits/non_evolved_average_precessing/posterior_samples.dat", names=True)
|
|
|
PESUMMARY = read("/home/charlie.hoy/public_html/projects/pesummary_review/remnant_fits/non_evolved_average_precessing/comparison_to_master/samples/PhenomPv3HM_pesummary.dat")
|
|
|
pesummary_samples = PESUMMARY.samples_dict
|
|
|
|
|
|
reverse_map = {item: key for key, item in lalinference_map.items()}
|
|
|
pesummary_dict = {}
|
|
|
for param in pesummary_samples.keys():
|
|
|
if param in reverse_map.keys():
|
|
|
pesummary_dict[reverse_map[param]] = pesummary_samples[param]
|
|
|
else:
|
|
|
pesummary_dict[param] = pesummary_samples[param]
|
|
|
|
|
|
# Check posterior samples
|
|
|
not_included = []
|
|
|
for param in ["l_peak_nonevol", "af_nonevol", "mf_nonevol"]:
|
|
|
if param in pesummary_dict.keys():
|
|
|
comparison = np.round(pesummary_dict[param], 8) == np.round(lalinf_samples[param], 8)
|
|
|
assert all(i == True for i in comparison)
|
|
|
else:
|
|
|
not_included.append(param)
|
|
|
|
|
|
if len(not_included):
|
|
|
print("--------------------")
|
|
|
print("Parameters not included in this analysis: {}".format(", ".join(not_included)))
|
|
|
print("--------------------")
|
|
|
```
|
|
|
|
|
|
# Review comments
|
|
|
|
|
|
## David Keitel 20200304
|
... | ... | |