Skip to content
Snippets Groups Projects
Commit 45bae128 authored by Jonah Kanner's avatar Jonah Kanner :nerd:
Browse files

Cleanup and bug fixes in plot_waveform

git-svn-id: https://svn.ligo.caltech.edu/svn/bayeswave/trunk@55 c56465c9-8126-4a4f-9d7d-ac845eff4865
parent 163716bc
No related branches found
No related tags found
No related merge requests found
......@@ -7,17 +7,47 @@ import glob
import argparse
import os
# -------------------------------------------------
# Define helper function to extract median waveform
# -------------------------------------------------
def get_waveform(fileList, ifo):
if not len(fileList) == 0:
count=0
for filename in fileList:
time, strain = np.loadtxt(filename, unpack=True)
if count == 0:
strain_master = np.zeros((200, strain.size))
strain_master[count] = strain
count += 1
print " "+str(count)+" waveforms found for IFO "+str(int(ifo)+1)
median_waveform = np.median(strain_master, axis=0)
down_vec = np.zeros(median_waveform.size)
up_vec = np.zeros(median_waveform.size)
for sample in range(median_waveform.size):
vector = np.transpose(strain_master)[sample]
sort_vec = np.sort(vector)
up_quart = sort_vec[ int(0.84*sort_vec.size) ]
down_quart = sort_vec[ int(0.16*sort_vec.size) ]
down_vec[sample] = down_quart
up_vec[sample] = up_quart
return (time, median_waveform, up_vec, down_vec)
# -- Parse command line arguments
parser = argparse.ArgumentParser(description='Produce html page for a BayesWaveBurst run.')
parser.add_argument('--mdc', default=False, help='Is this this an MDC? True/False (Default is false)')
args = parser.parse_args()
mdc = args.mdc
jobname = glob.glob('*bayeswave.run')[0]
bayeswave = open(jobname, 'r')
# ---------------------------------------
# Extract information from bayeswave.run
# ---------------------------------------
jobname = glob.glob('*bayeswave.run')[0]
bayeswave = open(jobname, 'r')
ifoNames = []
for line in bayeswave:
spl = line.split()
......@@ -67,33 +97,14 @@ for ifo in ifoList:
# -- Read Signal model
fileList = glob.glob('waveforms/'+str(jobname)+'signal_1_wave_*.dat.{0}'.format(ifo))
if not len(fileList) == 0:
count=0
for filename in fileList:
time, strain = np.loadtxt(filename, unpack=True)
if count == 0:
strain_master = np.zeros((200, strain.size))
strain_master[count] = strain
count += 1
print " "+str(count)+" waveforms found for IFO "+str(int(ifo)+1)
median_waveform = np.median(strain_master, axis=0)
down_vec = np.zeros(median_waveform.size)
up_vec = np.zeros(median_waveform.size)
for sample in range(median_waveform.size):
vector = np.transpose(strain_master)[sample]
sort_vec = np.sort(vector)
up_quart = sort_vec[ int(0.84*sort_vec.size) ]
down_quart = sort_vec[ int(0.16*sort_vec.size) ]
down_vec[sample] = down_quart
up_vec[sample] = up_quart
# -- Get axis info
wave = up_vec
# wave = median_waveform
wave_max = np.maximum(wave.max(), d_s.max())
sig_times = time[wave > 0.05*wave.max()]
axisList.append([sig_times.min(), sig_times.max(), -wave_max*1.1, wave_max*1.1])
(time, median_waveform, up_vec, down_vec) = get_waveform(fileList, ifo)
# -- Get axis info
wave = up_vec
# wave = median_waveform
wave_max = np.maximum(wave.max(), d_s.max())
sig_times = time[wave > 0.05*wave.max()]
axisList.append([sig_times.min(), sig_times.max(), -wave_max*1.1, wave_max*1.1])
# -- Select Axis with biggest y-value
ymax = 0
......@@ -110,137 +121,80 @@ for ifo in ifoList:
# Read in signal model and data
# ----------------------------------
fileList = glob.glob('waveforms/'+str(jobname)+'signal_1_wave_*.dat.{0}'.format(ifo))
if not len(fileList) == 0:
count=0
for filename in fileList:
time, strain = np.loadtxt(filename, unpack=True)
if count == 0:
strain_master = np.zeros((200, strain.size))
strain_master[count] = strain
count += 1
print " "+str(count)+" waveforms found for IFO "+str(int(ifo)+1)
median_waveform = np.median(strain_master, axis=0)
down_vec = np.zeros(median_waveform.size)
up_vec = np.zeros(median_waveform.size)
for sample in range(median_waveform.size):
vector = np.transpose(strain_master)[sample]
sort_vec = np.sort(vector)
up_quart = sort_vec[ int(0.84*sort_vec.size) ]
down_quart = sort_vec[ int(0.16*sort_vec.size) ]
down_vec[sample] = down_quart
up_vec[sample] = up_quart
(time, median_waveform, up_vec, down_vec) = get_waveform(fileList, ifo)
# -- Read whitened data
d_t, d_s = np.loadtxt('waveforms/'+str(jobname)+'clean_1_data_199.dat.{0}'.format(ifo), unpack=True)
# -- Read whitened data
d_t, d_s = np.loadtxt('waveforms/'+str(jobname)+'clean_1_data_199.dat.{0}'.format(ifo), unpack=True)
# -- Plot the median waveform and whitened data
fignum = plt.figure()
plt.plot(d_t, d_s, 'r', linewidth=1, alpha=0.3)
plt.plot(time, median_waveform, 'b', linewidth=2)
plt.fill_between(time, down_vec, up_vec, facecolor='blue', edgecolor='blue', alpha=0.3)
plt.axis(axwinner)
axisList.append([sig_times.min(), sig_times.max(), -wave_max*1.1, wave_max*1.1])
plt.xlabel('Time (s)')
plt.ylabel('Best Fit Waveform (blue) in whitened data (red)')
plt.title('IFO {0}'.format(ifo))
# -- Save the plot
plt.savefig('waveform_{0}.png'.format(ifo))
plt.close()
# -- Plot the clean, whitened data and best fit waveform
d_t, d_s = np.loadtxt('waveforms/'+str(jobname)+'clean_1_data_199.dat.{0}'.format(ifo), unpack=True)
plt.figure()
plt.plot(d_t, d_s, 'r', linewidth=3)
plt.plot(time, median_waveform, 'b', linewidth=1)
vertrange = np.maximum( median_waveform.max(), d_s.max() )
plt.axis([sig_times.min(), sig_times.max(), -vertrange*1.1, vertrange*1.1])
plt.xlabel('Time (s)')
plt.ylabel('Whitened Data (red) and Signal model (blue)')
plt.title('IFO {0}'.format(ifo))
plt.savefig('data_{0}.png'.format(ifo))
plt.close()
# -- Attempt to make a spectrogram of median waveform
ts = time[1] - time[0]
fs = int(np.round(1.0/ts))
NFFT = fs / 16
window = np.blackman(NFFT)
holder = np.zeros(1*NFFT)
seg = np.append(holder, median_waveform)
seg = np.append(seg, holder)
spec_power, freqs, bins = mlab.specgram(median_waveform, NFFT=NFFT, Fs=fs,
window=window, noverlap=int(0.8*NFFT))
# -- Try eliminating quiet pixels
sort_power = np.sort(spec_power.flatten())[::-1]
sum_power = np.cumsum(sort_power)
indx = np.nonzero( sum_power < 0.95*sum_power.max() )
point90 = sort_power[indx[0].max()]
spec_power[ spec_power < point90 ] = spec_power.min()
vmin = np.log10(spec_power[ spec_power > spec_power.min()].min())
# -- Try do it yourself spectrogram
plt.figure()
ax = plt.subplot(111)
ax.pcolormesh(bins-0.5, freqs, np.log10(spec_power), vmin=vmin, cmap='OrRd')
plt.title('IFO {0}'.format(ifo))
plt.xlabel('Time (s)')
plt.ylabel('Frequency (Hz)')
plt.axis([axwinner[0], axwinner[1], 0, fs/2])
plt.savefig('self_spec_{0}.png'.format(ifo))
plt.close()
# -- Plot the median waveform and whitened data
fignum = plt.figure()
plt.plot(d_t, d_s, 'r', linewidth=1, alpha=0.3)
plt.plot(time, median_waveform, 'b', linewidth=2)
plt.fill_between(time, down_vec, up_vec, facecolor='blue', edgecolor='blue', alpha=0.3)
plt.axis(axwinner)
axisList.append([sig_times.min(), sig_times.max(), -wave_max*1.1, wave_max*1.1])
plt.xlabel('Time (s)')
plt.ylabel('Best Fit Waveform (blue) in whitened data (red)')
plt.title('IFO {0}'.format(ifo))
# -- Save the plot
plt.savefig('waveform_{0}.png'.format(ifo))
plt.close()
# -- Attempt to make a spectrogram of median waveform
ts = time[1] - time[0]
fs = int(np.round(1.0/ts))
NFFT = fs / 16
window = np.blackman(NFFT)
holder = np.zeros(1*NFFT)
seg = np.append(holder, median_waveform)
seg = np.append(seg, holder)
spec_power, freqs, bins = mlab.specgram(median_waveform, NFFT=NFFT, Fs=fs,
window=window, noverlap=int(0.8*NFFT))
# -- Try eliminating quiet pixels
sort_power = np.sort(spec_power.flatten())[::-1]
sum_power = np.cumsum(sort_power)
indx = np.nonzero( sum_power < 0.95*sum_power.max() )
point90 = sort_power[indx[0].max()]
spec_power[ spec_power < point90 ] = spec_power.min()
vmin = np.log10(spec_power[ spec_power > spec_power.min()].min())
# -- Try do it yourself spectrogram
fig = plt.figure()
ax = plt.subplot(111)
binwidth = (bins[1] - bins[0]) / 2.0
cax = ax.pcolormesh(bins-0.5-binwidth, freqs, np.log10(spec_power), vmin=vmin, cmap='OrRd')
plt.title('IFO {0}'.format(ifo))
plt.xlabel('Time (s)')
plt.ylabel('Frequency (Hz)')
plt.axis([axwinner[0], axwinner[1], 0, fs/2])
cb = plt.colorbar(cax)
cb.set_label('Logrithmic Signal Power')
plt.savefig('self_spec_{0}.png'.format(ifo))
plt.close()
# --------------------------------
# -- Plot the median glitch model
# --------------------------------
fileList = glob.glob('waveforms/'+str(jobname)+'glitch_1_glitch_*.dat.{0}'.format(ifo))
(time, median_waveform, up_vec, down_vec) = get_waveform(fileList, ifo)
if not len(fileList) == 0:
count=0
for filename in fileList:
time, strain = np.loadtxt(filename, unpack=True)
if count == 0:
strain_master = np.zeros((200, strain.size))
strain_master[count] = strain
count += 1
median_waveform = np.median(strain_master, axis=0)
down_vec = np.zeros(median_waveform.size)
up_vec = np.zeros(median_waveform.size)
for sample in range(median_waveform.size):
vector = np.transpose(strain_master)[sample]
sort_vec = np.sort(vector)
up_quart = sort_vec[ int(0.84*sort_vec.size) ]
down_quart = sort_vec[ int(0.16*sort_vec.size) ]
down_vec[sample] = down_quart
up_vec[sample] = up_quart
plt.figure()
plt.plot(d_t, d_s, 'r', linewidth=1, alpha=0.3)
plt.plot(time, median_waveform, 'k', linewidth=2)
plt.fill_between(time, down_vec, up_vec, facecolor='black', edgecolor='black', alpha=0.3)
# -- Adjust plot properties
plt.axis(axwinner)
plt.xlabel('Time (s)')
plt.ylabel('Best Fit Glitch Model (whitened)')
plt.title('IFO {0}'.format(ifo))
plt.figure()
plt.plot(d_t, d_s, 'r', linewidth=1, alpha=0.3)
plt.plot(time, median_waveform, 'k', linewidth=2)
plt.fill_between(time, down_vec, up_vec, facecolor='black', edgecolor='black', alpha=0.3)
# -- Adjust plot properties
plt.axis(axwinner)
plt.xlabel('Time (s)')
plt.ylabel('Best Fit Glitch Model (whitened)')
plt.title('IFO {0}'.format(ifo))
# -- Save the plot
plt.savefig('glitch_{0}.png'.format(ifo))
plt.close()
# -- Save the plot
plt.savefig('glitch_{0}.png'.format(ifo))
plt.close()
# -----------------------
# Plot the median PSDs
......@@ -397,10 +351,19 @@ if os.path.isfile('condorOut.txt'):
# -- If MDC, read SNR info
if mdc=='True':
snrFile = open('*snr/snr.dat', 'r')
snrLine = snrFile.read()
print "Looking for SNRs..."
snrList = []
foundSnr=False
snrFile = open('condorOut.txt', 'r')
for line in snrFile:
if line.find('Recompute')>0:
print "Found Recompute section!"
foundSnr = True
if (line.find('Injected SNR')>-1) and foundSnr:
print "Found an SNR!!"
snrList.append(float(line.split()[2]))
snrFile.close
snrList = [float(snr) for snr in snrLine.split()]
info = info + "The detectors are {0} \n".format( ', '.join(ifoNames) )
info = info + " The trigger time is GPS {0} \n".format(gps)
......@@ -435,12 +398,6 @@ web.write("Reconstructed waveforms in whitened data. Red is data, blue is recon
for ifo in ifoList:
web.write("<img src='./waveform_{0}.png' alt='waveform_{0}.png' width=500>".format(ifo))
# -- Plot the data and best fit waveform
# web.write("<h3>Whitened Data (red) and Median Reconstructed Waveform (blue) </h3>")
# web.write("Reconstructed waveforms in whitened data. Red is data, blue is reconstructed waveform<br/>")
# for ifo in ifoList:
# web.write("<img src='./data_{0}.png' alt='data_{0}.png' width=500>".format(ifo))
# -- Write out Glitch model
web.write("<h3>Median Glitch Model Waveforms and 1-sigma Uncertainties</h3>")
web.write("Reconstructed waveforms in whitened data<br/>")
......@@ -450,7 +407,6 @@ for ifo in ifoList:
# -- Write out spectrogram
web.write("<h3>Spectrogram of median reconstructed signal model waveform</h3>")
for ifo in ifoList:
# web.write("<img src='./spec_{0}.png' alt='spec_{0}.png' width=500>".format(ifo) )
web.write("<img src='./self_spec_{0}.png' alt='self_spec_{0}.png' width=500>".format(ifo) )
# -- Write out the PSDs
......@@ -463,11 +419,6 @@ web.write("<h3>Diagnostic plots of Likelihood and Temperature</h3>")
web.write("<img src='./likelihood.png' alt='likelihood.png' width=500>")
web.write("<img src='./TL.png' alt='TL.png' width=500> <br/>" )
# -- Put all plots on web site
# plotlist = glob.glob('*.png')
# for plot in plotlist:
# web.write("<img src='{0}' width=200>".format(plot))
# -- Include skymap
web.write('<h3>Skymap</h3>')
web.write("<img src='./skymap.png' alt='No_skymap_available' width=650>")
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment