Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bilby
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Patrick Meyers
bilby
Commits
7ba61c5a
Commit
7ba61c5a
authored
3 years ago
by
Pat Meyers
Browse files
Options
Downloads
Patches
Plain Diff
Include proposals that jump along eigenvectors of covariance matrix of past samples.
parent
ff6de208
No related branches found
No related tags found
No related merge requests found
Pipeline
#377521
failed
3 years ago
Stage: initial
Stage: test
Stage: docs
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
bilby/bilby_mcmc/proposals.py
+78
-0
78 additions, 0 deletions
bilby/bilby_mcmc/proposals.py
with
78 additions
and
0 deletions
bilby/bilby_mcmc/proposals.py
+
78
−
0
View file @
7ba61c5a
...
...
@@ -346,6 +346,84 @@ class UniformProposal(BaseProposal):
return
sample
,
log_factor
class
CovarianceAMProposal
(
BaseProposal
):
def
__init__
(
self
,
priors
,
weight
=
1
,
subset
=
None
,
n_samples_for_covariance
=
10000
,
min_samples
=
100
,
):
super
(
CovarianceAMProposal
,
self
).
__init__
(
priors
,
weight
,
subset
)
"""
Jump along eigenvectors of most recent samples. Based on proposals
in PTMCMCSampler: https://github.com/jellis18/PTMCMCSampler
Parameters
----------
priors: bilby.core.prior.PriorDict
The set of priors
weight: float
Weighting factor
subset: list
A list of keys for which to restrict the proposal to (other parameters
will be kept fixed)
n_samples_for_covariance: int, optional, default=10000
Max number of samples to use for calculating covariance
min_samples: int, optional, default=100
Min number of samples before calculating covariance matrix
"""
self
.
U
=
None
self
.
S
=
None
self
.
n_samples_for_covariance
=
n_samples_for_covariance
self
.
min_samples
=
min_samples
if
subset
is
not
None
:
if
len
(
subset
)
==
1
:
raise
ValueError
(
"
Don
'
t use CovarianceAMProposal on only one parameter.
"
)
self
.
parameter_indexes
=
np
.
array
(
[
self
.
parameters
.
index
(
key
)
for
key
in
subset
]
)
else
:
self
.
parameter_indexes
=
np
.
arange
(
len
(
self
.
parameters
))
def
propose
(
self
,
chain
):
prob
=
np
.
random
.
rand
()
Nparams
=
len
(
self
.
parameter_indexes
)
if
prob
>
0.97
:
scale
=
10
elif
prob
>
0.9
:
scale
=
0.2
else
:
scale
=
1.0
current_sample
=
chain
.
current_sample
if
chain
.
position
<
self
.
min_samples
:
covmat
=
np
.
eye
(
Nparams
)
else
:
lookback
=
min
(
chain
.
position
,
self
.
n_samples_for_covariance
)
idxs
=
np
.
arange
(
-
lookback
,
0
)
+
chain
.
position
recent_samples
=
chain
.
_chain_array
[
idxs
][:,
self
.
parameter_indexes
]
covmat
=
np
.
cov
(
recent_samples
.
T
)
self
.
U
,
self
.
S
,
_
=
np
.
linalg
.
svd
(
covmat
)
# put recent sample into eigenbasis
y
=
self
.
U
.
T
@
np
.
array
(
current_sample
.
list
)[
self
.
parameter_indexes
]
cd
=
2.4
/
np
.
sqrt
(
2
*
y
.
size
)
*
scale
y
+=
np
.
random
.
randn
(
y
.
size
)
*
cd
*
np
.
sqrt
(
self
.
S
)
# change back to original basis
q
=
self
.
U
@
y
for
jj
,
paridx
in
enumerate
(
self
.
parameter_indexes
):
current_sample
[
self
.
parameters
[
paridx
]]
=
q
[
jj
]
return
current_sample
,
0
class
PriorProposal
(
BaseProposal
):
"""
A proposal using draws from the prior distribution
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment