Skip to content
Snippets Groups Projects
Commit 7ba61c5a authored by Pat Meyers's avatar Pat Meyers
Browse files

Include proposals that jump along eigenvectors of covariance matrix of past samples.

parent ff6de208
No related branches found
No related tags found
No related merge requests found
Pipeline #377521 failed
......@@ -346,6 +346,84 @@ class UniformProposal(BaseProposal):
return sample, log_factor
class CovarianceAMProposal(BaseProposal):
def __init__(
self,
priors,
weight=1,
subset=None,
n_samples_for_covariance=10000,
min_samples=100,
):
super(CovarianceAMProposal, self).__init__(priors, weight, subset)
"""
Jump along eigenvectors of most recent samples. Based on proposals
in PTMCMCSampler: https://github.com/jellis18/PTMCMCSampler
Parameters
----------
priors: bilby.core.prior.PriorDict
The set of priors
weight: float
Weighting factor
subset: list
A list of keys for which to restrict the proposal to (other parameters
will be kept fixed)
n_samples_for_covariance: int, optional, default=10000
Max number of samples to use for calculating covariance
min_samples: int, optional, default=100
Min number of samples before calculating covariance matrix
"""
self.U = None
self.S = None
self.n_samples_for_covariance = n_samples_for_covariance
self.min_samples = min_samples
if subset is not None:
if len(subset) == 1:
raise ValueError(
"Don't use CovarianceAMProposal on only one parameter."
)
self.parameter_indexes = np.array(
[self.parameters.index(key) for key in subset]
)
else:
self.parameter_indexes = np.arange(len(self.parameters))
def propose(self, chain):
prob = np.random.rand()
Nparams = len(self.parameter_indexes)
if prob > 0.97:
scale = 10
elif prob > 0.9:
scale = 0.2
else:
scale = 1.0
current_sample = chain.current_sample
if chain.position < self.min_samples:
covmat = np.eye(Nparams)
else:
lookback = min(chain.position, self.n_samples_for_covariance)
idxs = np.arange(-lookback, 0) + chain.position
recent_samples = chain._chain_array[idxs][:, self.parameter_indexes]
covmat = np.cov(recent_samples.T)
self.U, self.S, _ = np.linalg.svd(covmat)
# put recent sample into eigenbasis
y = self.U.T @ np.array(current_sample.list)[self.parameter_indexes]
cd = 2.4 / np.sqrt(2 * y.size) * scale
y += np.random.randn(y.size) * cd * np.sqrt(self.S)
# change back to original basis
q = self.U @ y
for jj, paridx in enumerate(self.parameter_indexes):
current_sample[self.parameters[paridx]] = q[jj]
return current_sample, 0
class PriorProposal(BaseProposal):
"""A proposal using draws from the prior distribution
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment