... | ... | @@ -29,16 +29,16 @@ This repository deals with the result review of the machine learning based pipel |
|
|
| [condor_lensid_make_predictions.py](https://git.ligo.org/srashti.goyal/lensid-ml-o3/-/blob/master/condor_lensid_make_predictions.py) | Condor Script for computing ML predictions and FPPs using, [ml_predict_workflow.py](https://git.ligo.org/srashti.goyal/lensid/-/blob/master/package/lensid/ml_predict_workflow.py). Eg: `python condor_lensid_make_predictions` Note: change `exec_file_loc` in the script according to your installation and `odir` in config file. | OK-DC | ca47c5ce71fa7405b84c944235a8646abcd216d4 | --------- | ---------------- |
|
|
|
|
|
|
## Investigations
|
|
|
| Notebook | Short description | Status | git hash | Comment | final sign-off |
|
|
|
| Notebook | Short description | Status | Comment | Reviewed|
|
|
|
|----------|-------------------|--------|----------|---------|----------------|
|
|
|
| [train_test_pars.ipynb](https://git.ligo.org/srashti.goyal/lensid/-/blob/master/review/train_test_pars.ipynb) | Notebook having plots of injection parameters for training, testing and O3a sets that are used. | JRC: OK | -------- | ------- | -------------- |
|
|
|
| [ML_blu_FPPs_inj_pars_investigate.ipynb](https://git.ligo.org/srashti.goyal/lensid/-/blob/master/review/ML_blu_FPPs_inj_pars_investigate.ipynb) | Notebook comparing the ML and BLU FPPs for each pair in test set, and also investigationg correlations with the injection parameters. Also contain statistics of input sky features for lensed and unlensed test pairs. | JRC: OK | -------- | ------- | -------------- |
|
|
|
| [PSD_plots.ipynb](https://git.ligo.org/srashti.goyal/lensid/-/blob/master/review/PSD_plots.ipynb) | Notebook having plots of PSDs that are used. | JRC: OK | -------- | ------- | -------------- |
|
|
|
| [hp_cartview.ipynb](https://git.ligo.org/srashti.goyal/lensid/-/blob/master/review/hp_cartview.ipynb) | Sanity check for bayestar skymaps to see overall probability and the overlap calculation for cartesian projection v/s the flattened fits. | JRC: OK | ------- | --------- | ---------------- |
|
|
|
| [background_injections_ML_blu.ipynb](https://git.ligo.org/srashti.goyal/lensid/-/blob/master/notebooks/O3a_events/background_injections_ML_blu.ipynb) | Notebook showing ML and BLU outputs for the background unlensed injections as simulated by Haris during O3a analysis. | JRC: OK | -------- | ------- | -------------- |
|
|
|
| [investigations_visualisations.ipynb](https://git.ligo.org/srashti.goyal/lensid-ml-o3/-/blob/master/review/investigations_visualisations.ipynb) | Notebook to visualise qtransforms and skymaps of the interesting candidate real event pairs. | JRC: OK | | --------- | ---------------- |
|
|
|
| [optimise_densenets.py](https://git.ligo.org/srashti.goyal/lensid/-/blob/master/development/optimise_densenets.py) | Optimise densenet learning rates, with and without whitening of strain | JRC: OK | ------- | --------- | ---------------- |
|
|
|
| [missing_strain_ML_qts.ipynb](https://git.ligo.org/srashti.goyal/lensid-ml-o3/-/blob/master/review/missing_strain_ML_qts.ipynb) | Implement XGBoost with QTs using imputed values instead of 1s(default) for the single/double detector real events. Additionally compare the results of PO and ML to Golum for the selected candidates. | JRC: 0K | ------- | --------- | ---------------- |
|
|
|
| [train_test_pars.ipynb](https://git.ligo.org/srashti.goyal/lensid/-/blob/master/review/train_test_pars.ipynb) | Notebook having plots of injection parameters for training, testing and O3a sets that are used. | JRC: OK | -------- | -------------- |
|
|
|
| [ML_blu_FPPs_inj_pars_investigate.ipynb](https://git.ligo.org/srashti.goyal/lensid/-/blob/master/review/ML_blu_FPPs_inj_pars_investigate.ipynb) | Notebook comparing the ML and BLU FPPs for each pair in test set, and also investigationg correlations with the injection parameters. Also contain statistics of input sky features for lensed and unlensed test pairs. | JRC: OK | -------- | -------------- |
|
|
|
| [PSD_plots.ipynb](https://git.ligo.org/srashti.goyal/lensid/-/blob/master/review/PSD_plots.ipynb) | Notebook having plots of PSDs that are used. | JRC: OK | -------- | -------------- |
|
|
|
| [hp_cartview.ipynb](https://git.ligo.org/srashti.goyal/lensid/-/blob/master/review/hp_cartview.ipynb) | Sanity check for bayestar skymaps to see overall probability and the overlap calculation for cartesian projection v/s the flattened fits. | JRC: OK | ------- | ---------------- |
|
|
|
| [background_injections_ML_blu.ipynb](https://git.ligo.org/srashti.goyal/lensid/-/blob/master/notebooks/O3a_events/background_injections_ML_blu.ipynb) | Notebook showing ML and BLU outputs for the background unlensed injections as simulated by Haris during O3a analysis. | JRC: OK | -------- | -------------- |
|
|
|
| [investigations_visualisations.ipynb](https://git.ligo.org/srashti.goyal/lensid-ml-o3/-/blob/master/review/investigations_visualisations.ipynb) | Notebook to visualise qtransforms and skymaps of the interesting candidate real event pairs. | JRC: OK | --------- | ---------------- |
|
|
|
| [optimise_densenets.py](https://git.ligo.org/srashti.goyal/lensid/-/blob/master/development/optimise_densenets.py) | Optimise densenet learning rates, with and without whitening of strain | JRC: OK | --------- | ---------------- |
|
|
|
| [missing_strain_ML_qts.ipynb](https://git.ligo.org/srashti.goyal/lensid-ml-o3/-/blob/master/review/missing_strain_ML_qts.ipynb) | Implement XGBoost with QTs using imputed values instead of 1s(default) for the single/double detector real events. Additionally compare the results of PO and ML to Golum for the selected candidates. | JRC: 0K | --------- | ---------------- |
|
|
|
|
|
|
## Results
|
|
|
|
... | ... | @@ -158,7 +158,7 @@ In progress: [page](https://git.ligo.org/srashti.goyal/lensid-ml-o3/-/wikis/O3-r |
|
|
|
|
|
### Action items:
|
|
|
|
|
|
* [ ] Update code review page with relevant git hashes and all the scripts/configs.
|
|
|
* [x] Update code review page with relevant git hashes and all the scripts/configs.
|
|
|
* [ ] Visually inspect the pairs which are missed or preferred by ML, and try to identify the reason(s).
|
|
|
* [ ] Check if the background is needed to be updated.
|
|
|
* [ ] Make note of all possible improvements for O4 .
|
... | ... | |