Skip to content
Snippets Groups Projects
Commit 90d5c106 authored by Gregory Ashton's avatar Gregory Ashton
Browse files

Merge branch 'add-functionality-to-strain-data' into 'master'

Add functionality to strain data

See merge request Monash/tupak!94
parents e990bc56 caac3d80
No related branches found
No related tags found
No related merge requests found
......@@ -31,6 +31,7 @@ exitcode-jessie:
- coverage erase
- coverage run --source /usr/local/lib/python2.7/dist-packages/tupak/ -a test/conversion_tests.py
- coverage run --source /usr/local/lib/python2.7/dist-packages/tupak/ -a test/detector_tests.py
- coverage run --source /usr/local/lib/python2.7/dist-packages/tupak/ -a test/utils_tests.py
- coverage run --source /usr/local/lib/python2.7/dist-packages/tupak/ -a test/prior_tests.py
- coverage run --source /usr/local/lib/python2.7/dist-packages/tupak/ -a test/sampler_tests.py
- coverage run --source /usr/local/lib/python2.7/dist-packages/tupak/ -a test/waveform_generator_tests.py
......
......@@ -3,7 +3,7 @@ dynesty
corner
numpy>=1.9
matplotlib>=2.0
scipy
scipy>=0.16
gwpy
pandas
astropy
......
......@@ -358,6 +358,23 @@ class TestInterferometerStrainData(unittest.TestCase):
sampling_frequency=sampling_frequency, start_time=10)
self.assertTrue(self.ifosd.start_time == 10)
def test_time_array_frequency_array_consistency(self):
duration = 1
sampling_frequency = 10
time_array = tupak.core.utils.create_time_series(
sampling_frequency=sampling_frequency, duration=duration)
time_domain_strain = np.random.normal(0, 1, len(time_array))
self.ifosd.roll_off = 0
self.ifosd.set_from_time_domain_strain(
time_domain_strain=time_domain_strain, duration=duration,
sampling_frequency=sampling_frequency)
frequency_domain_strain, freqs = tupak.core.utils.nfft(
time_domain_strain, sampling_frequency)
self.assertTrue(np.all(
frequency_domain_strain == self.ifosd.frequency_domain_strain))
#def test_sampling_duration_init(self):
# self.assertIsNone(self.ifo.duration)
......
from __future__ import absolute_import, division
import tupak
import unittest
import numpy as np
import matplotlib.pyplot as plt
class TestFFT(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_nfft_frequencies(self):
f = 2.1
sampling_frequency = 10
times = np.arange(0, 100, 1/sampling_frequency)
tds = np.sin(2*np.pi*times * f + 0.4)
fds, freqs = tupak.core.utils.nfft(tds, sampling_frequency)
self.assertTrue(np.abs((f-freqs[np.argmax(np.abs(fds))])/f < 1e-15))
def test_nfft_infft(self):
sampling_frequency = 10
tds = np.random.normal(0, 1, 10)
fds, _ = tupak.core.utils.nfft(tds, sampling_frequency)
tds2 = tupak.core.utils.infft(fds, sampling_frequency)
self.assertTrue(np.all(np.abs((tds - tds2) / tds) < 1e-12))
if __name__ == '__main__':
unittest.main()
......@@ -33,6 +33,25 @@ def get_sampling_frequency(time_series):
return 1. / (time_series[1] - time_series[0])
def get_sampling_frequency_and_duration_from_time_array(time_array):
"""
Calculate sampling frequency and duration from a time array
Returns
-------
sampling_frequency, duration:
Raises
-------
ValueError: If the time_array is not evenly sampled.
"""
sampling_frequency = get_sampling_frequency(time_array)
duration = time_array[-1] - time_array[0]
return sampling_frequency, duration
def get_sampling_frequency_and_duration_from_frequency_array(frequency_array):
"""
Calculate sampling frequency and duration from a frequency array
......@@ -201,59 +220,68 @@ def create_white_noise(sampling_frequency, duration):
return white_noise, frequencies
def nfft(ht, Fs):
""" Performs an FFT while keeping track of the frequency bins assumes input time series is real
(positive frequencies only)
def nfft(time_domain_strain, sampling_frequency):
""" Perform an FFT while keeping track of the frequency bins. Assumes input
time series is real (positive frequencies only).
Parameters
-------
ht: array_like
Time series
Fs: float
Sampling frequency
----------
time_domain_strain: array_like
Time series of strain data.
sampling_frequency: float
Sampling frequency of the data.
Returns
-------
array_like: Single-sided FFT of ft normalised to units of strain / sqrt(Hz) (hf)
array_like: Frequencies associated with hf
frequency_domain_strain, frequency_array: (array, array)
Single-sided FFT of time domain strain normalised to units of
strain / Hz, and the associated frequency_array.
"""
# add one zero padding if time series does not have even number of sampling times
if np.mod(len(ht), 2) == 1:
ht = np.append(ht, 0)
LL = len(ht)
if np.ndim(sampling_frequency) != 0:
raise ValueError("Sampling frequency must be interger or float")
# add one zero padding if time series doesn't have even number of samples
if np.mod(len(time_domain_strain), 2) == 1:
time_domain_strain = np.append(time_domain_strain, 0)
LL = len(time_domain_strain)
# frequency range
ff = Fs / 2 * np.linspace(0, 1, int(LL/2+1))
frequency_array = sampling_frequency / 2 * np.linspace(0, 1, int(LL/2+1))
# calculate FFT
# rfft computes the fft for real inputs
hf = np.fft.rfft(ht)
frequency_domain_strain = np.fft.rfft(time_domain_strain)
# normalise to units of strain / sqrt(Hz)
hf = hf / Fs
# normalise to units of strain / Hz
norm_frequency_domain_strain = frequency_domain_strain / sampling_frequency
return hf, ff
return norm_frequency_domain_strain, frequency_array
def infft(hf, Fs):
""" Inverse FFT for use in conjunction with nfft (eric.thrane@ligo.org)
def infft(frequency_domain_strain, sampling_frequency):
""" Inverse FFT for use in conjunction with nfft.
Parameters
-------
hf: array_like
single-side FFT calculated by fft_eht
Fs: float
sampling frequency
----------
frequency_domain_strain: array_like
Single-sided, normalised FFT of the time-domain strain data (in units
of strain / Hz).
sampling_frequency: float
Sampling frequency of the data.
Returns
-------
array_like: time series
time_domain_strain: array
An array of the time domain strain
"""
# use irfft to work with positive frequencies only
h = np.fft.irfft(hf)
# undo LAL/Lasky normalisation
h = h*Fs
return h
if np.ndim(sampling_frequency) != 0:
raise ValueError("Sampling frequency must be integer or float")
time_domain_strain_norm = np.fft.irfft(frequency_domain_strain)
time_domain_strain = time_domain_strain_norm * sampling_frequency
return time_domain_strain
def setup_logger(outdir=None, label=None, log_level=None, print_version=False):
......
This diff is collapsed.
......@@ -291,7 +291,7 @@ def get_event_time(event):
def get_open_strain_data(
name, t1, t2, outdir, cache=False, raw_data_file=None, **kwargs):
name, t1, t2, outdir, cache=False, buffer_time=0, **kwargs):
""" A function which accesses the open strain data
This uses `gwpy` to download the open data and then saves a cached copy for
......@@ -307,9 +307,10 @@ def get_open_strain_data(
The output directory to place data in
cache: bool
If true, cache the data
buffer_time: float
Time to add to the begining and end of the segment.
**kwargs:
Passed to `gwpy.timeseries.TimeSeries.fetch_open_data`
raw_data_file
Returns
-----------
......@@ -317,19 +318,18 @@ def get_open_strain_data(
"""
filename = '{}/{}_{}_{}.txt'.format(outdir, name, t1, t2)
if raw_data_file is not None:
logging.info('Using raw_data_file {}'.format(raw_data_file))
strain = TimeSeries.read(raw_data_file)
if (t1 > strain.times[0].value) and (t2 < strain.times[-1].value):
logging.info('Using supplied raw data file')
strain = strain.crop(t1, t2)
else:
raise ValueError('Supplied file does not contain requested data')
elif os.path.isfile(filename) and cache:
if buffer_time < 0:
raise ValueError("buffer_time < 0")
t1 = t1 - buffer_time
t2 = t2 + buffer_time
if os.path.isfile(filename) and cache:
logging.info('Using cached data from {}'.format(filename))
strain = TimeSeries.read(filename)
else:
logging.info('Fetching open data ...')
logging.info('Fetching open data from {} to {} with buffer time {}'
.format(t1, t2, buffer_time))
strain = TimeSeries.fetch_open_data(name, t1, t2, **kwargs)
logging.info('Saving data to {}'.format(filename))
strain.write(filename)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment