Skip to content
Snippets Groups Projects
ifo.yaml 15.9 KiB
Newer Older
# GWINC Voyager interferometer parameters

# parameters for quad pendulum suspension updated 3rd May 2006, NAR
# References:
# LIGO-T000012-00-D
# 	* Differentiate between silica and sapphire substrate absorption
# 	* Change ribbon suspension aspect ratio
# 	* Change pendulum frequency
# * References:
# * 1. Electro-Optic Handbook, Waynant & Ediger (McGraw-Hill: 1993)
# * 2. LIGO/GEO data/experience
# * 3. Suspension reference design, LIGO-T000012-00
# * 4. Quartz Glass for Optics Data and Properties, Heraeus data sheet,
# *    numbers for suprasil
# * 5. Y.S. Touloukian (ed), Thermophysical Properties of Matter 
# *    (IFI/Plenum,1970)
# * 6. Marvin J. Weber (ed) CRC Handbook of laser science and technology, 
# *    Vol 4, Pt 2
# * 7. R.S. Krishnan et al.,Thermal Expansion of Crystals, Pergamon Press
# * 8. P. Klocek, Handbook of infrared and optical materials, Marcel Decker, 
# *    1991
# * 9. Rai Weiss, electronic log from 5/10/2006
# * 10. Wikipedia online encyclopedia, 2006
# * 11. D.K. Davies, The Generation and Dissipation of Static Charge on
# * dielectrics in a Vacuum, page 29
# * 12. Gretarsson & Harry, Gretarsson thesis
# * 13. Fejer
# * 14. Braginsky

Infrastructure:
  Length: 3995 # m
  Temp: 295 # K; Temperature of the Vacuum
    H2:
      BeamtubePressure: 2.7e-7      # Pa
      ChamberPressure: 2.7e-7       # Pa
      mass: 3.35e-27                # kg; Mass of H_2 (ref. 10)
      polarizability: 7.8e-31       # m^3

    N2:
      BeamtubePressure: 1.33e-8
      ChamberPressure: 1.33e-8
      mass: 4.65e-26
      polarizability: 1.71e-30

    H2O:
      BeamtubePressure: 1.33e-8
      ChamberPressure: 1.33e-8
      mass: 2.99e-26
      polarizability: 1.50e-30

    O2:
      BeamtubePressure: 1e-9
      ChamberPressure: 1e-9
      mass: 5.31e-26
      polarizability: 1.56e-30


TCS:
  ## Parameter describing thermal lensing
  # The presumably dominant effect of a thermal lens in the ITMs is an increased
  # mode mismatch into the SRC, and thus an increased effective loss of the SRC.
  # This increase is estimated by calculating the round-trip loss S in the SRC as
  # 1-S = |<Psi|exp(i*phi)|Psi>|^2, where
  # |Psi> is the beam hitting the ITM and
  # phi = P_coat*phi_coat + P_subs*phi_subs
  # with phi_coat & phi__subs the specific lensing profiles
  # and P_coat & P_subst the power absorbed in coating and substrate
  #
  # This expression can be expanded to 2nd order and is given by
  # S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2
  # s_cc, s_cs and s_ss where calculated analytically by Phil Wilems (4/2007)
  s_cc: 7.024 # Watt^-2
  s_cs: 7.321 # Watt^-2
  s_ss: 7.631 # Watt^-2
  # The hardest part to model is how efficient the TCS system is in
  # compensating this loss. Thus as a simple Ansatz we define the
  # TCS efficiency TCSeff as the reduction in effective power that produces
  # a phase distortion. E.g. TCSeff=0.99 means that the compensated distortion
Jameson Graef Rollins's avatar
Jameson Graef Rollins committed
  # of 1 Watt absorbed is equivalent to the uncompensated distortion of 10mWatt.
  # The above formula thus becomes:
  # S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2 * (1-TCSeff)^2
  #
  # To avoid iterative calculation we define TCS.SCRloss = S as an input
  # and calculate TCSeff as an output.
  # TCS.SRCloss is incorporated as an additional loss in the SRC
  SRCloss: 0.00

Seismic:
  ## Seismic and Gravity Gradient Parameters
  Site: 'LHO'                      # LHO or LLO (only used for Newtonian noise)
  KneeFrequency: 10                # Hz; freq where 'flat' noise rolls off
  LowFrequencyLevel: 1e-9          # m/rtHz; seismic noise level below f_knee
  Gamma: 0.8                       # abruptness of change at f_knee
  Rho: 1.8e3                       # kg/m^3; density of the ground nearby
  Beta: 0.8                        # quiet times beta = 0.35-0.60; noisy times beta = 0.15-1.4
  Omicron: 10                      # Feedforward cancellation factor
  TestMassHeight: 1.5              # m
  pWaveSpeed: 600                   # m/s
  sWaveSpeed: 300                   # m/s
  RayleighWaveSpeed: 250           # m/s
  pWaveLevel: 45                    # Multiple of the Peterson NLNM amplitude
  sWaveLevel: 45                    # Multiple of the Peterson NLNM amplitude
  PlatformMotion: '6D'
  #darmSeiSusFile: 'CryogenicLIGO/Sensitivity/GWINC/seismic.mat'


Atmospheric:
  AirPressure: 101325               # Pa
  AirDensity: 1.225                 # kg/m**3
  AirKinematicViscosity: 1.8e-5     # m**2/s
  AdiabaticIndex: 1.4               #
  SoundSpeed: 344                   # m/s
  WindSpeed: 10                     # m/s; typical value
  Temperature: 300                  # K
  TempStructConst: 0.2              # K**2/m**(2/3);
  TempStructExp: 0.667              #
  TurbOuterScale: 100               # m
  # TurbEnergyDissRate: 0.01        # m**2/s**3
  KolmEnergy1m: 1                   # Kolmogorov energy spectrum at 1/m [m**2/s**2]


  Type: 'Quad'
    theta: 1e-3  # vertical-horizontal x-coupling
  FiberType: 'Ribbon'
  # For Ribbon suspension
  # 1:10 aspect ratio & stress limited to 1GPa
  # -- Feb 25, 2018 (KA)
    Thickness: 500e-6  # m
    Width: 10000e-6    # m
  # Note stage numbering: mirror is at beginning of stack, not end
  #
  # mass/length from Koji's seis&sus_thermal optimization
  # load('Suspension_subcodes/sus_param.mat')
  #
  # Vert spring constants scaled from the aLIGO values
  # according to the suspended mass by each stage
  # The spring constant of the final stage
  # Silicon Blade for max 1GPa stress has 43mm sag under 50kg load.
  # This corresponds to 1.14e4 N/m. There are 4 blades.
  # Silicon Blade for max 300MPa stress has 9.6mm sag under 50kg load.
  # This corresponds to 1.14e4 N/m. There are 4 blades.
  # Silicon Blade (40cmx8cm) for max 100MPa stress has 7.5mm sag under 50kg load.
  # This corresponds to 6.5e4 N/m. There are 4 blades.
  #
  # Wire radii scaled from the aLIGO values
  # according to the suspended mass by each stage
  # For steel stages, we limit the stress up to 700MPa which was the number
  # from the aLIGO case.
  #
  # Blade thicknesses scaled from the aLIGO values
  # Used only for TE calculation
  # Not reflected to the vertical spring constants
  # Need to be recalculated -- Feb 25, 2018 (KA)
  # Spring constant is proportional to (the blade thickness)^3.
    - Mass: 200.0  # kg; sus_param(5)
      Length: 0.7824  # m; sus_param(1)
      K: 2.6e5  # N/m; 6.5e4*4
      Blade: 12e-3  # blade thickness
      WireMaterial: 'Silicon_123K'
      BladeMaterial: 'Silicon_123K'
    - Mass: 200.0  # kg; sus_param(6)
      Length: 0.5592  # m; sus_param(2)
      Dilution: .nan
      K: 2.63e4  # N/m; vertical spring constant
      WireRadius: 0.668e-3
      Blade: 7.21e-3
      WireMaterialUpper: 'C70Steel'
      WireMaterialLower: 'C70Steel_123K'
      BladeMaterial: 'MaragingSteel'
    - Mass: 70.0  # kg; sus_param(7)
      Length: 0.1500  # m; sus_param(3)
      Temp: 295.0
      Dilution: .nan
      K: 1.82e4  # N/m; vertical spring constant
      WireRadius: 0.724e-3
      Blade: 7.7e-3
      WireMaterial: 'C70Steel'
      BladeMaterial: 'MaragingSteel'
    - Mass: 50.0  # kg; sus_param(8)
      Length: 0.1500  # m; sus_param(4)
      Temp: 295.0
      Dilution: .nan
      K: 1.14e5  # N/m; vertical spring constant
      WireRadius: 1.08e-3
      Blade: 13.9e-3
      WireMaterial: 'C70Steel'
      BladeMaterial: 'MaragingSteel'
  Silicon_123K:
    # http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html
    # all properties should be for T ~ 120 K
    Rho: 2329.0       # Kg/m^3   density
    C: 300.0          # J/kg/K   heat capacity
    K: 700.0          # W/m/K    thermal conductivity
    Alpha: 1e-10      # 1/K      thermal expansion coeff
    # from Gysin, et. al. PRB (2004)  E(T) = E0 - B*T*exp(-T0/T)
    # E0 = 167.5e9 Pa   T0 = 317 K   B = 15.8e6 Pa/K
    dlnEdT: -2e-5     # (1/K)    dlnE/dT  T = 120K
    Phi: 2e-9         # Nawrodt (2010)      loss angle  1/Q
    Y: 155.8e9        # Pa       Youngs Modulus
    # Investigation of mechanical losses of thin silicon flexures at low temperatures
    # R Nawrodt et al 2013 Class. Quantum Grav. 30 115008
    # ds*phi = 0.5e-12 -> ds=0.5e-12/2e-9
    Dissdepth: 2.5e-4
  Silica:
    Rho: 2200.0       # Kg/m^3
    C: 772.0          # J/Kg/K
    K: 1.38           # W/m/kg
    Alpha: 3.9e-7     # 1/K
    dlnEdT: 1.52e-4   # (1/K), dlnE/dT
    Phi: 4.1e-10      # from G Harry e-mail to NAR 27April06
    Y: 72e9           # Pa; Youngs Modulus
    Dissdepth: 1.5e-2 # from G Harry e-mail to NAR 27April06
  C70Steel:
    Rho: 7800.0
    C: 486.0
    K: 49.0
    Alpha: 12e-6
    dlnEdT: -2.5e-4
    Phi: 2e-4
    Y: 212e9  # measured by MB for one set of wires
  C70Steel_123K:
    Rho: 7800.0  # same as at 300K
    C: 250.0  # guess
    K: 15.0  # https://nptel.ac.in/courses/112101004/downloads/(6-3-2)%20NPTEL%20-%20Properties%20of%20Materials%20at%20Cryogenic%20Temperature.pdf
    Alpha: 8e-6  # https://nptel.ac.in/courses/112101004/downloads/(6-3-2)%20NPTEL%20-%20Properties%20of%20Materials%20at%20Cryogenic%20Temperature.pdf
    dlnEdT: -2.5e-4
    Phi: 2e-4
    Y: 212e9
  MaragingSteel:
    Rho: 7800.0
    C: 460.0
    K: 20.0
    Alpha: 11e-6
    dlnEdT: 0.0
    Phi: 1.0e-4
    Y: 187e9
    # consistent with measured blade spring constants NAR

Materials:
  ## Amorphous Silicon / Silica coating
  Coating:
    # high index material: a-Si
    # https://wiki.ligo.org/OPT/AmorphousSilicon
    Yhighn: 60e9      # http://dx.doi.org/10.1063/1.344462
    CVhighn: 1.05e6   # volume-specific heat capacity (J/K/m^3); 465*2250 http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.96.055902
    Alphahighn: 1e-9  # zero crossing at 123 K
    Betahighn: 1.4e-4 # dn/dT
    ThermalDiffusivityhighn: 1.03 # thermal conductivity W/m/K; http://dx.doi.org/10.1103/PhysRevLett.96.055902
    Phihighn: 1e-5    # just a guess (depends on prep)
    Indexhighn: 3.5

    # low index material: silica
    # https://wiki.ligo.org/OPT/SilicaCoatingProp
    Ylown: 72e9       # Young's modulus (Pa)
    Sigmalown: 0.17   # Poisson's ratio
    CVlown: 1.6412e6  # volume-specific heat capacity (J/K/m^3); Crooks et al, Fejer et al
    Alphalown: 5.1e-7 # Fejer et al
    Betalown: 8e-6    # dn/dT,  (ref. 14)
    ThermalDiffusivitylown: 1.05 # thermal conductivity W/m/K; http://dx.doi.org/10.1109/ITHERM.2002.1012450
    Philown: 1e-4     # ?

    # calculated for 123 K and 2000 nm following 
    # Ghosh, et al (1994):  http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=317500
    Indexlown: 1.436  # calculated (RXA)

  ## Substrate Material parameters
  # Silicon @ 120K (http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html)
  Substrate:
    #  phi_sub = c2 * f^(MechLossExp)
    c2: 3e-13            # Coeff of freq dep. term for bulk loss (Lam & Douglass, 1981)
    MechanicalLossExponent: 1 # Exponent for freq dependence of silicon loss
    Alphas: 5.2e-12      # Surface loss limit ???
    MirrorY: 155.8e9     # N/m^2; Youngs modulus (ioffe) -- what about anisotropy??
    MirrorSigma: 0.27    # kg/m^3; Poisson ratio (ioffe) -- what about anisotropy??
    MassDensity: 2329    # kg/m^3; (ioffe)
    MassAlpha: 1e-9      # 1/K; CTE = 0 @ 120 K
    MassCM: 300          # J/kg/K; specific heat (ioffe @ 120K)
    MassKappa: 700       # W/(m*K); thermal conductivity (ioffe @ 120)
    RefractiveIndex: 3.5 # 3.38 * (1 + 4e-5 * T)   (ioffe)
    dndT: 1e-4           # ~123K & 1900 nm : http://arxiv.org/abs/physics/0606168
    Temp: 123            # mirror temperature [K]

  MassRadius: 0.225 # m; 45 cm mCZ silicon
  MassThickness: 0.55

Laser:
  Wavelength: 2000e-9 # m
  Power: 151.5919     # W zz['x'][0][0]

Optics:
  Type: 'SignalRecycled'

  # calculate arm cavity spot sizes
  # L = ifo.Infrastructure.Length
  # w1,w2,junk = SpotSizes(1 - L / ifo.Optics.Curvature.ITM,
  #                        1 - L / ifo.Optics.Curvature.ETM,
  #                        L, ifo.Laser.Wavelength)
  # load quantum PSO
  # qopt_mat = sorted(os.listdir('CryogenicLIGO/Sensitivity/GWINC/optRuns'))[-1]
  # zz = loadmat('CryogenicLIGO/Sensitivity/GWINC/optRuns/' + qopt_mat)
  ITM:
    SubstrateAbsorption: 1e-3   # 1/m; 10 ppm/cm for MCZ Si
    CoatingAbsorption: 1e-6     # absorption of ITM
    Transmittance: 2e-3         # zz['x'][0][3]
    #CoatingThicknessLown: 0.308
    #CoatingThicknessCap: 0.5
    #itm = loadmat('CryogenicLIGO/Sensitivity/coating/aSi/Data/ITM_layers_151221_2237.mat')
    CoatLayerOpticalThickness: #itm['TNout']['L'][0][0].T
      - 0.010547147008907
      - 0.287871950886634
      - 0.102859957426864
      - 0.400169140711108
      - 0.098761965585538
      - 0.394635060435437
      - 0.105461298430110
      - 0.376121362983190
      - 0.121814822178758
      - 0.358839306265721
      - 0.135707673300901
      - 0.386738199718736
      - 0.088142365969070
  ETM:
    Transmittance: 5e-6                # Transmittance of ETM
    #CoatingThicknessLown: 0.27
    #CoatingThicknessCap: 0.5
    #etm = loadmat('CryogenicLIGO/Sensitivity/coating/aSi/Data/ETM_layers_151221_2150.mat')
    CoatLayerOpticalThickness: #etm['TNout']['L'][0][0].T
      - 0.010002413172599
      - 0.271214331066003
      - 0.164174846618198
      - 0.335989914883352
      - 0.161231951101195
      - 0.335876828755542
      - 0.161500120481736
      - 0.336207246174627
      - 0.163812752345812
      - 0.333822310779772
      - 0.160417119090227
      - 0.335440166104688
      - 0.166431402148518
      - 0.333247215316394
      - 0.163197340499259
      - 0.334971108967147
      - 0.158386886176904
    Transmittance: 0.049
  SRM:
    CavityLength: 55           # m; ITM to SRM distance
    Transmittance: 45.8e-3     # zz['x'][0][4]
    #ifo.Optics.SRM.Tunephase = 0.23;           % SRM tuning, 795 Hz narrowband
    Tunephase: 0.0             # SRM tuning [radians]
  PhotoDetectorEfficiency: 0.95 # photo-detector quantum efficiency
  Loss: 10e-6                  # average per mirror power loss
  # factor of 4 for 1064 -> 2000
  BSLoss: 0.5e-3               # power loss near beamsplitter
  coupling: 1.0                # mismatch btwn arms & SRC modes; used to calculate an effective r_srm
  Curvature:
    ITM: 1800                  # RoC of ITM
    ETM: 2500                  # RoC of ETM
  SubstrateAbsorption: 0.3e-4  # 1/m; 0.3 ppm/cm for Hereaus
  pcrit: 10                    # W; tolerable heating power (factor 1 ATC)
  Quadrature:
    dc: 1.5832                 # homoDyne phase [radians] zz['x'][0][5]

Squeezer:
  # Define the squeezing you want:
  #   None = ignore the squeezer settings
Jameson Graef Rollins's avatar
Jameson Graef Rollins committed
  #   Freq Independent = nothing special (no filter cavities)
  #   Freq Dependent = applies the specified filter cavities
  #   Optimal = find the best squeeze angle, assuming no output filtering
  #   OptimalOptimal = optimal squeeze angle, assuming optimal readout phase
  Type: 'Freq Dependent'
  AmplitudedB: 10                  # SQZ amplitude [dB]
  InjectionLoss: 0.05              # power loss to sqz
  SQZAngle: 0                      # SQZ phase [radians]
  LOAngleRMS: 10e-3                # quadrature noise [radians]

  # Parameters for frequency dependent squeezing
  FilterCavity:
    fdetune: -27.3    # detuning [Hz] zz['x'][0][1]
    L: 300            # cavity length [m]
    Ti: 6.88e-4       # input mirror transmission [Power] zz['x'][0][2]
Jameson Graef Rollins's avatar
Jameson Graef Rollins committed
    Te: 0e-6          # end mirror transmission
    Lrt: 10e-6        # round-trip loss in the cavity
    Rot: 0            # phase rotation after cavity

  ## Variational Output Parameters
  # Define the output filter cavity chain
  #   None = ignore the output filter settings
  #   Chain = apply filter cavity chain
  #   Optimal = find the best readout phase
  OutputFilter:
    Type: 'None'
    FilterCavity:
      fdetune: -30   # detuning [Hz]
      L: 4000        # cavity length
Jameson Graef Rollins's avatar
Jameson Graef Rollins committed
      Ti: 10e-3      # input mirror transmission [Power]
      Te: 0          # end mirror transmission
      Lrt: 100e-6    # round-trip loss in the cavity
      Rot: 0         # phase rotation after cavity