Newer
Older
# GWINC Voyager interferometer parameters
# parameters for quad pendulum suspension updated 3rd May 2006, NAR
# References:
# LIGO-T000012-00-D
# * Differentiate between silica and sapphire substrate absorption
# * Change ribbon suspension aspect ratio
# * Change pendulum frequency
# * References:
# * 1. Electro-Optic Handbook, Waynant & Ediger (McGraw-Hill: 1993)
# * 2. LIGO/GEO data/experience
# * 3. Suspension reference design, LIGO-T000012-00
# * 4. Quartz Glass for Optics Data and Properties, Heraeus data sheet,
# * numbers for suprasil
# * 5. Y.S. Touloukian (ed), Thermophysical Properties of Matter
# * (IFI/Plenum,1970)
# * 6. Marvin J. Weber (ed) CRC Handbook of laser science and technology,
# * Vol 4, Pt 2
# * 7. R.S. Krishnan et al.,Thermal Expansion of Crystals, Pergamon Press
# * 8. P. Klocek, Handbook of infrared and optical materials, Marcel Decker,
# * 1991
# * 9. Rai Weiss, electronic log from 5/10/2006
# * 10. Wikipedia online encyclopedia, 2006
# * 11. D.K. Davies, The Generation and Dissipation of Static Charge on
# * dielectrics in a Vacuum, page 29
# * 12. Gretarsson & Harry, Gretarsson thesis
# * 13. Fejer
# * 14. Braginsky
Infrastructure:
Length: 3995 # m
Temp: 295 # K; Temperature of the Vacuum
H2:
BeamtubePressure: 2.7e-7 # Pa
ChamberPressure: 2.7e-7 # Pa
mass: 3.35e-27 # kg; Mass of H_2 (ref. 10)
polarizability: 7.8e-31 # m^3
N2:
BeamtubePressure: 1.33e-8
ChamberPressure: 1.33e-8
mass: 4.65e-26
polarizability: 1.71e-30
H2O:
BeamtubePressure: 1.33e-8
ChamberPressure: 1.33e-8
mass: 2.99e-26
polarizability: 1.50e-30
O2:
BeamtubePressure: 1e-9
ChamberPressure: 1e-9
mass: 5.31e-26
polarizability: 1.56e-30
TCS:
## Parameter describing thermal lensing
# The presumably dominant effect of a thermal lens in the ITMs is an increased
# mode mismatch into the SRC, and thus an increased effective loss of the SRC.
# This increase is estimated by calculating the round-trip loss S in the SRC as
# 1-S = |<Psi|exp(i*phi)|Psi>|^2, where
# |Psi> is the beam hitting the ITM and
# phi = P_coat*phi_coat + P_subs*phi_subs
# with phi_coat & phi__subs the specific lensing profiles
# and P_coat & P_subst the power absorbed in coating and substrate
#
# This expression can be expanded to 2nd order and is given by
# S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2
# s_cc, s_cs and s_ss where calculated analytically by Phil Wilems (4/2007)
s_cc: 7.024 # Watt^-2
s_cs: 7.321 # Watt^-2
s_ss: 7.631 # Watt^-2
# The hardest part to model is how efficient the TCS system is in
# compensating this loss. Thus as a simple Ansatz we define the
# TCS efficiency TCSeff as the reduction in effective power that produces
# a phase distortion. E.g. TCSeff=0.99 means that the compensated distortion
# of 1 Watt absorbed is equivalent to the uncompensated distortion of 10mWatt.
# The above formula thus becomes:
# S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2 * (1-TCSeff)^2
#
# To avoid iterative calculation we define TCS.SCRloss = S as an input
# and calculate TCSeff as an output.
# TCS.SRCloss is incorporated as an additional loss in the SRC
SRCloss: 0.00
Seismic:
## Seismic and Gravity Gradient Parameters
Site: 'LHO' # LHO or LLO (only used for Newtonian noise)
KneeFrequency: 10 # Hz; freq where 'flat' noise rolls off
LowFrequencyLevel: 1e-9 # m/rtHz; seismic noise level below f_knee
Gamma: 0.8 # abruptness of change at f_knee
Rho: 1.8e3 # kg/m^3; density of the ground nearby
Beta: 0.8 # quiet times beta = 0.35-0.60; noisy times beta = 0.15-1.4
Omicron: 10 # Feedforward cancellation factor
pWaveSpeed: 600 # m/s
sWaveSpeed: 300 # m/s
RayleighWaveSpeed: 250 # m/s
pWaveLevel: 45 # Multiple of the Peterson NLNM amplitude
sWaveLevel: 45 # Multiple of the Peterson NLNM amplitude
#darmSeiSusFile: 'CryogenicLIGO/Sensitivity/GWINC/seismic.mat'
Atmospheric:
AirPressure: 101325 # Pa
AirDensity: 1.225 # kg/m**3
AirKinematicViscosity: 1.8e-5 # m**2/s
AdiabaticIndex: 1.4 #
SoundSpeed: 344 # m/s
WindSpeed: 10 # m/s; typical value
Temperature: 300 # K
TempStructConst: 0.2 # K**2/m**(2/3);
TempStructExp: 0.667 #
TurbOuterScale: 100 # m
# TurbEnergyDissRate: 0.01 # m**2/s**3
KolmEnergy1m: 1 # Kolmogorov energy spectrum at 1/m [m**2/s**2]
theta: 1e-3 # vertical-horizontal x-coupling
# 1:10 aspect ratio & stress limited to 1GPa
# -- Feb 25, 2018 (KA)
Thickness: 500e-6 # m
Width: 10000e-6 # m
# Note stage numbering: mirror is at beginning of stack, not end
#
# mass/length from Koji's seis&sus_thermal optimization
# load('Suspension_subcodes/sus_param.mat')
#
# Vert spring constants scaled from the aLIGO values
# according to the suspended mass by each stage
# The spring constant of the final stage
# Silicon Blade for max 1GPa stress has 43mm sag under 50kg load.
# This corresponds to 1.14e4 N/m. There are 4 blades.
# Silicon Blade for max 300MPa stress has 9.6mm sag under 50kg load.
# This corresponds to 1.14e4 N/m. There are 4 blades.
# Silicon Blade (40cmx8cm) for max 100MPa stress has 7.5mm sag under 50kg load.
# This corresponds to 6.5e4 N/m. There are 4 blades.
#
# Wire radii scaled from the aLIGO values
# according to the suspended mass by each stage
# For steel stages, we limit the stress up to 700MPa which was the number
# from the aLIGO case.
#
# Blade thicknesses scaled from the aLIGO values
# Used only for TE calculation
# Not reflected to the vertical spring constants
# Need to be recalculated -- Feb 25, 2018 (KA)
# Spring constant is proportional to (the blade thickness)^3.
- Mass: 200.0 # kg; sus_param(5)
Length: 0.7824 # m; sus_param(1)
Jameson Graef Rollins
committed
Temp: 123.0
WireMaterial: 'Silicon_123K'
BladeMaterial: 'Silicon_123K'
- Mass: 200.0 # kg; sus_param(6)
Length: 0.5592 # m; sus_param(2)
Dilution: .nan
K: 2.63e4 # N/m; vertical spring constant
WireRadius: 0.668e-3
Blade: 7.21e-3
WireMaterialUpper: 'C70Steel'
WireMaterialLower: 'C70Steel_123K'
BladeMaterial: 'MaragingSteel'
- Mass: 70.0 # kg; sus_param(7)
Length: 0.1500 # m; sus_param(3)
Temp: 295.0
Dilution: .nan
K: 1.82e4 # N/m; vertical spring constant
WireRadius: 0.724e-3
Blade: 7.7e-3
WireMaterial: 'C70Steel'
BladeMaterial: 'MaragingSteel'
- Mass: 50.0 # kg; sus_param(8)
Length: 0.1500 # m; sus_param(4)
Temp: 295.0
Dilution: .nan
K: 1.14e5 # N/m; vertical spring constant
WireRadius: 1.08e-3
Blade: 13.9e-3
WireMaterial: 'C70Steel'
BladeMaterial: 'MaragingSteel'
Silicon_123K:
# http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html
# all properties should be for T ~ 120 K
Rho: 2329.0 # Kg/m^3 density
C: 300.0 # J/kg/K heat capacity
K: 700.0 # W/m/K thermal conductivity
Alpha: 1e-10 # 1/K thermal expansion coeff
# from Gysin, et. al. PRB (2004) E(T) = E0 - B*T*exp(-T0/T)
# E0 = 167.5e9 Pa T0 = 317 K B = 15.8e6 Pa/K
dlnEdT: -2e-5 # (1/K) dlnE/dT T = 120K
Phi: 2e-9 # Nawrodt (2010) loss angle 1/Q
Y: 155.8e9 # Pa Youngs Modulus
# Investigation of mechanical losses of thin silicon flexures at low temperatures
# R Nawrodt et al 2013 Class. Quantum Grav. 30 115008
# ds*phi = 0.5e-12 -> ds=0.5e-12/2e-9
Dissdepth: 2.5e-4
Silica:
Rho: 2200.0 # Kg/m^3
C: 772.0 # J/Kg/K
K: 1.38 # W/m/kg
Alpha: 3.9e-7 # 1/K
dlnEdT: 1.52e-4 # (1/K), dlnE/dT
Phi: 4.1e-10 # from G Harry e-mail to NAR 27April06
Y: 72e9 # Pa; Youngs Modulus
Dissdepth: 1.5e-2 # from G Harry e-mail to NAR 27April06
C70Steel:
Rho: 7800.0
C: 486.0
K: 49.0
Alpha: 12e-6
dlnEdT: -2.5e-4
Phi: 2e-4
Y: 212e9 # measured by MB for one set of wires
C70Steel_123K:
Rho: 7800.0 # same as at 300K
C: 250.0 # guess
K: 15.0 # https://nptel.ac.in/courses/112101004/downloads/(6-3-2)%20NPTEL%20-%20Properties%20of%20Materials%20at%20Cryogenic%20Temperature.pdf
Alpha: 8e-6 # https://nptel.ac.in/courses/112101004/downloads/(6-3-2)%20NPTEL%20-%20Properties%20of%20Materials%20at%20Cryogenic%20Temperature.pdf
dlnEdT: -2.5e-4
Phi: 2e-4
Y: 212e9
MaragingSteel:
Rho: 7800.0
C: 460.0
K: 20.0
Alpha: 11e-6
dlnEdT: 0.0
Phi: 1.0e-4
Y: 187e9
# consistent with measured blade spring constants NAR
Materials:
## Amorphous Silicon / Silica coating
Coating:
# high index material: a-Si
# https://wiki.ligo.org/OPT/AmorphousSilicon
Yhighn: 60e9 # http://dx.doi.org/10.1063/1.344462
CVhighn: 1.05e6 # volume-specific heat capacity (J/K/m^3); 465*2250 http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.96.055902
Alphahighn: 1e-9 # zero crossing at 123 K
Betahighn: 1.4e-4 # dn/dT
ThermalDiffusivityhighn: 1.03 # thermal conductivity W/m/K; http://dx.doi.org/10.1103/PhysRevLett.96.055902
Phihighn: 1e-5 # just a guess (depends on prep)
Indexhighn: 3.5
# low index material: silica
# https://wiki.ligo.org/OPT/SilicaCoatingProp
Ylown: 72e9 # Young's modulus (Pa)
Sigmalown: 0.17 # Poisson's ratio
CVlown: 1.6412e6 # volume-specific heat capacity (J/K/m^3); Crooks et al, Fejer et al
Alphalown: 5.1e-7 # Fejer et al
Betalown: 8e-6 # dn/dT, (ref. 14)
ThermalDiffusivitylown: 1.05 # thermal conductivity W/m/K; http://dx.doi.org/10.1109/ITHERM.2002.1012450
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
Philown: 1e-4 # ?
# calculated for 123 K and 2000 nm following
# Ghosh, et al (1994): http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=317500
Indexlown: 1.436 # calculated (RXA)
## Substrate Material parameters
# Silicon @ 120K (http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html)
Substrate:
# phi_sub = c2 * f^(MechLossExp)
c2: 3e-13 # Coeff of freq dep. term for bulk loss (Lam & Douglass, 1981)
MechanicalLossExponent: 1 # Exponent for freq dependence of silicon loss
Alphas: 5.2e-12 # Surface loss limit ???
MirrorY: 155.8e9 # N/m^2; Youngs modulus (ioffe) -- what about anisotropy??
MirrorSigma: 0.27 # kg/m^3; Poisson ratio (ioffe) -- what about anisotropy??
MassDensity: 2329 # kg/m^3; (ioffe)
MassAlpha: 1e-9 # 1/K; CTE = 0 @ 120 K
MassCM: 300 # J/kg/K; specific heat (ioffe @ 120K)
MassKappa: 700 # W/(m*K); thermal conductivity (ioffe @ 120)
RefractiveIndex: 3.5 # 3.38 * (1 + 4e-5 * T) (ioffe)
dndT: 1e-4 # ~123K & 1900 nm : http://arxiv.org/abs/physics/0606168
Temp: 123 # mirror temperature [K]
MassRadius: 0.225 # m; 45 cm mCZ silicon
MassThickness: 0.55
Laser:
Wavelength: 2000e-9 # m
Optics:
Type: 'SignalRecycled'
# calculate arm cavity spot sizes
# L = ifo.Infrastructure.Length
# w1,w2,junk = SpotSizes(1 - L / ifo.Optics.Curvature.ITM,
# 1 - L / ifo.Optics.Curvature.ETM,
# L, ifo.Laser.Wavelength)
# load quantum PSO
# qopt_mat = sorted(os.listdir('CryogenicLIGO/Sensitivity/GWINC/optRuns'))[-1]
# zz = loadmat('CryogenicLIGO/Sensitivity/GWINC/optRuns/' + qopt_mat)
ITM:
SubstrateAbsorption: 1e-3 # 1/m; 10 ppm/cm for MCZ Si
CoatingAbsorption: 1e-6 # absorption of ITM
#CoatingThicknessLown: 0.308
#CoatingThicknessCap: 0.5
#itm = loadmat('CryogenicLIGO/Sensitivity/coating/aSi/Data/ITM_layers_151221_2237.mat')
CoatLayerOpticalThickness: #itm['TNout']['L'][0][0].T
- 0.010547147008907
- 0.287871950886634
- 0.102859957426864
- 0.400169140711108
- 0.098761965585538
- 0.394635060435437
- 0.105461298430110
- 0.376121362983190
- 0.121814822178758
- 0.358839306265721
- 0.135707673300901
- 0.386738199718736
- 0.088142365969070
ETM:
Transmittance: 5e-6 # Transmittance of ETM
#CoatingThicknessLown: 0.27
#CoatingThicknessCap: 0.5
#etm = loadmat('CryogenicLIGO/Sensitivity/coating/aSi/Data/ETM_layers_151221_2150.mat')
CoatLayerOpticalThickness: #etm['TNout']['L'][0][0].T
- 0.010002413172599
- 0.271214331066003
- 0.164174846618198
- 0.335989914883352
- 0.161231951101195
- 0.335876828755542
- 0.161500120481736
- 0.336207246174627
- 0.163812752345812
- 0.333822310779772
- 0.160417119090227
- 0.335440166104688
- 0.166431402148518
- 0.333247215316394
- 0.163197340499259
- 0.334971108967147
- 0.158386886176904
SRM:
CavityLength: 55 # m; ITM to SRM distance
#ifo.Optics.SRM.Tunephase = 0.23; % SRM tuning, 795 Hz narrowband
Tunephase: 0.0 # SRM tuning [radians]
PhotoDetectorEfficiency: 0.95 # photo-detector quantum efficiency
Loss: 10e-6 # average per mirror power loss
# factor of 4 for 1064 -> 2000
BSLoss: 0.5e-3 # power loss near beamsplitter
coupling: 1.0 # mismatch btwn arms & SRC modes; used to calculate an effective r_srm
Curvature:
ITM: 1800 # RoC of ITM
ETM: 2500 # RoC of ETM
SubstrateAbsorption: 0.3e-4 # 1/m; 0.3 ppm/cm for Hereaus
pcrit: 10 # W; tolerable heating power (factor 1 ATC)
Quadrature:
dc: 1.5832 # homoDyne phase [radians] zz['x'][0][5]
Squeezer:
# Define the squeezing you want:
# None = ignore the squeezer settings
# Freq Independent = nothing special (no filter cavities)
# Freq Dependent = applies the specified filter cavities
# Optimal = find the best squeeze angle, assuming no output filtering
# OptimalOptimal = optimal squeeze angle, assuming optimal readout phase
Type: 'Freq Dependent'
AmplitudedB: 10 # SQZ amplitude [dB]
InjectionLoss: 0.05 # power loss to sqz
SQZAngle: 0 # SQZ phase [radians]
LOAngleRMS: 10e-3 # quadrature noise [radians]
# Parameters for frequency dependent squeezing
FilterCavity:
fdetune: -27.3 # detuning [Hz] zz['x'][0][1]
L: 300 # cavity length [m]
Ti: 6.88e-4 # input mirror transmission [Power] zz['x'][0][2]
Lrt: 10e-6 # round-trip loss in the cavity
Rot: 0 # phase rotation after cavity
## Variational Output Parameters
# Define the output filter cavity chain
# None = ignore the output filter settings
# Chain = apply filter cavity chain
# Optimal = find the best readout phase
OutputFilter:
Type: 'None'
FilterCavity:
fdetune: -30 # detuning [Hz]
L: 4000 # cavity length
Ti: 10e-3 # input mirror transmission [Power]
Te: 0 # end mirror transmission
Lrt: 100e-6 # round-trip loss in the cavity
Rot: 0 # phase rotation after cavity