Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# GWINC aLIGO interferometer parameters
#
# parameters for quad pendulum suspension updated 3rd May 2006, NAR
# References:
# LIGO-T000012-00-D
# * Differentiate between silica and sapphire substrate absorption
# * Change ribbon suspension aspect ratio
# * Change pendulum frequency
# References:
# 1. Electro-Optic Handbook, Waynant & Ediger (McGraw-Hill: 1993)
# 2. LIGO/GEO data/experience
# 3. Suspension reference design, LIGO-T000012-00
# 4. Quartz Glass for Optics Data and Properties, Heraeus data sheet,
# numbers for suprasil
# 5. Y.S. Touloukian (ed), Thermophysical Properties of Matter
# (IFI/Plenum,1970)
# 6. Marvin J. Weber (ed) CRC Handbook of laser science and technology,
# Vol 4, Pt 2
# 7. R.S. Krishnan et al.,Thermal Expansion of Crystals, Pergamon Press
# 8. P. Klocek, Handbook of infrared and optical materials, Marcel Decker,
# 1991
# 9. Rai Weiss, electronic log from 5/10/2006
# 10. Wikipedia online encyclopedia, 2006
# 11. D.K. Davies, The Generation and Dissipation of Static Charge on
# dielectrics in a Vacuum, page 29
# 12. Gretarsson & Harry, Gretarsson thesis
# 13. Fejer
# 14. Braginsky
#
#
Constants:
# Temperature of the Vacuum
Temp: 290 # K
Infrastructure:
Length: 3995 # m
ResidualGas:
pressure: 4.0e-7 # Pa
mass: 3.35e-27 # kg; Mass of H_2 (ref. 10)
polarizability: 7.8e-31 # m^3
TCS:
s_cc: 7.024 # Watt^-2
s_cs: 7.321 # Watt^-2
s_ss: 7.631 # Watt^-2
# The hardest part to model is how efficient the TCS system is in
# compensating this loss. Thus as a simple Ansatz we define the
# TCS efficiency TCSeff as the reduction in effective power that produces
# a phase distortion. E.g. TCSeff=0.99 means that the compensated distortion
# of 1 Watt absorbed is eqivalent to the uncompensated distortion of 10mWatt.
# The above formula thus becomes:
# S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2 * (1-TCSeff)^2
#
# To avoid iterative calculation we define TCS.SCRloss = S as an input
# and calculate TCSeff as an output.
# TCS.SRCloss is incorporated as an additional loss in the SRC
SRCloss: 0.00
Seismic:
Site: 'LHO' # LHO or LLO (only used for Newtonian noise)
KneeFrequency: 10 # Hz; freq where 'flat' noise rolls off
LowFrequencyLevel: 1e-9 # m/rtHz; seismic noise level below f_knee
Gamma: .8 # abruptness of change at f_knee
Rho: 1.8e3 # kg/m^3; density of the ground nearby
Beta: 0.5 # quiet times beta: 0.35-0.60
# noisy times beta: 0.15-1.4
Omicron: 1 # Feedforward cancellation factor
Suspension:
# 0 for cylindrical suspension
#Type: 'Quad'
Type: 2
# 0: round, 1: ribbons
FiberType: 0
BreakStress: 750e6 # Pa; ref. K. Strain
Temp: 290
VHCoupling:
theta: 1e-3 # vertical-horizontal x-coupling
Silica:
Rho : 2200 # Kg/m^3;
C : 772 # J/Kg/K;
K : 1.38 # W/m/kg;
Alpha : 3.9e-7 # 1/K;
dlnEdT: 1.52e-4 # (1/K), dlnE/dT
Phi : 4.1e-10 # from G Harry e-mail to NAR 27April06 dimensionless units
Y : 72e9 # Pa; Youngs Modulus
Dissdepth: 1.5e-2 # from G Harry e-mail to NAR 27April06
C70Steel:
Rho: 7800
C: 486
K: 49
Alpha: 12e-6
dlnEdT: -2.5e-4
Phi: 2e-4
Y: 212e9 # measured by MB for one set of wires
MaragingSteel:
Rho: 7800
C: 460
K: 20
Alpha: 11e-6
dlnEdT: 0
Phi: 1e-4
Y: 187e9
# ref ---- http://design.caltech.edu/Research/MEMS/siliconprop.html
# all properties should be for T ~ 20 K
Silicon:
Rho: 2330 # Kg/m^3; density
C: 772 # J/kg/K heat capacity
K: 4980 # W/m/K thermal conductivity
Alpha: 1e-9 # 1/K thermal expansion coeff
# from Gysin, et. al. PRB (2004) E(T): E0 - B*T*exp(-T0/T)
# E0: 167.5e9 Pa T0: 317 K B: 15.8e6 Pa/K
dlnEdT: 2.5e-10 # (1/K) dlnE/dT T=20K
Phi: 2e-9 # Nawrodt (2010) loss angle 1/Q
Y: 150e9 # Pa Youngs Modulus
Dissdepth: 1.5e-3 # 10x smaller surface loss depth (Nawrodt (2010))
# Note stage numbering: mirror is at beginning of stack, not end
#
# last stage length adjusted for d: 10mm and and d_bend = 4mm
# (since 602mm is the CoM separation, and d_bend is accounted for
# in suspQuad, so including it here would double count)
Stage1:
Mass: 39.6 # kg; current numbers May 2006 NAR
Length: 0.59 # m
Dilution: .nan #
K: .nan # N/m; vertical spring constant
WireRadius: .nan # m
Blade: .nan # blade thickness
NWires: 4
Stage2:
Mass: 39.6
Length: 0.341
Dilution: 106
K: 5200
WireRadius: 310e-6
Blade: 4200e-6
NWires: 4
Stage3:
Mass: 21.8
Length: 0.277
Dilution: 80
K: 3900
WireRadius: 350e-6
Blade: 4600e-6
NWires: 4
Stage4:
Mass: 22.1
Length: 0.416
Dilution: 87
K: 3400
WireRadius: 520e-6
Blade: 4300e-6
NWires: 2
Ribbon:
Thickness: 115e-6 # m
Width: 1150e-6 # m
Fiber:
Radius: 205e-6 # m
Blade: 4300e-6
## Optic Material -------------------------------------------------------
Materials:
MassRadius: 0.17 # m;
MassThickness: 0.200 # m; Peter F 8/11/2005
## Dielectric coating material parameters----------------------------------
Coating:
## high index material: tantala
Yhighn: 140e9
Sigmahighn: 0.23
CVhighn: 2.1e6 # Crooks et al, Fejer et al
Alphahighn: 3.6e-6 # 3.6e-6 Fejer et al, 5e-6 from Braginsky
Betahighn: 1.4e-5 # dn/dT, value Gretarrson (G070161)
ThermalDiffusivityhighn: 33 # Fejer et al
Phihighn: 2.3e-4
Indexhighn: 2.06539
## low index material: silica
Ylown: 72e9
Sigmalown: 0.17
CVlown: 1.6412e6 # Crooks et al, Fejer et al
Alphalown: 5.1e-7 # Fejer et al
Betalown: 8e-6 # dn/dT, (ref. 14)
ThermalDiffusivitylown: 1.38 # Fejer et al
Philown: 4.0e-5
Indexlown: 1.45
## Substrate Material parameters--------------------------------------------
Substrate:
c2 : 7.6e-12 # Coeff of freq depend. term for bulk mechanical loss, 7.15e-12 for Sup2
MechanicalLossExponent: 0.77 # Exponent for freq dependence of silica loss, 0.822 for Sup2
Alphas: 5.2e-12 # Surface loss limit (ref. 12)
MirrorY: 7.27e10 # N/m^2; Youngs modulus (ref. 4)
MirrorSigma: 0.167 # Kg/m^3; Poisson ratio (ref. 4)
MassDensity: 2.2e3 # Kg/m^3; (ref. 4)
MassAlpha: 3.9e-7 # 1/K; thermal expansion coeff. (ref. 4)
MassCM: 739 # J/Kg/K; specific heat (ref. 4)
MassKappa: 1.38 # J/m/s/K; thermal conductivity (ref. 4)
RefractiveIndex: 1.45 # mevans 25 Apr 2008
## Laser-------------------------------------------------------------------
Laser:
Wavelength: 1.064e-6 # m
Power: 125 # W
## Optics------------------------------------------------------------------
Optics:
Type: 'SignalRecycled'
PhotoDetectorEfficiency: 0.95 # photo-detector quantum efficiency
Loss: 37.5e-6 # average per mirror power loss
BSLoss: 0.5e-3 # power loss near beamsplitter
coupling: 1.0 # mismatch btwn arms & SRC modes; used to
#SubstrateAbsorption: 0.5e-4 # 1/m; bulk absorption coef (ref. 2)
SubstrateAbsorption: 0.3e-4 # 1/m; 0.3 ppm/cm for Hereaus
pcrit: 10 # W; tolerable heating power (factor 1 ATC)
Quadrature:
dc: 1.5707963 # pi/2 # demod/detection/homodyne phase
ITM:
BeamRadius: 0.055 # m, 1/e^2 power radius
Transmittance: 0.014
CoatingThicknessLown: 0.308
CoatingThicknessCap: 0.5
CoatingAbsorption: 0.5e-6
SubstrateAbsorption: 0.3e-4 # 1/m, 0.3 ppm/cm for Hereaus
ETM:
BeamRadius: 0.062 # m, 1/e^2 power radius
Transmittance: 5e-6
CoatingThicknessLown: 0.27
CoatingThicknessCap: 0.5
PRM:
Transmittance: 0.03
SRM:
Transmittance: 0.20
CavityLength: 55 # m, ITM to SRM distance
Tunephase: 0.0 # SEC tuning
Curvature: # ROC
ITM: 1970
ETM: 2192
## Squeezer Parameters------------------------------------------------------
# Define the squeezing you want:
# None: ignore the squeezer settings
# Freq Independent: nothing special (no filter cavties)
# Freq Dependent = applies the specified filter cavites
# Optimal = find the best squeeze angle, assuming no output filtering
# OptimalOptimal = optimal squeeze angle, assuming optimal readout phase
Squeezer:
Type: 'None'
AmplitudedB: 10 # SQZ amplitude [dB]
InjectionLoss: 0.05 # power loss to sqz
SQZAngle: 0 # SQZ phase [radians]
# Parameters for frequency dependent squeezing
FilterCavity:
fdetune: -14.5 # detuning [Hz]
L: 100 # cavity length
Ti: 0.12e-3 # input mirror trasmission [Power]
Te: 0 # end mirror trasmission
Lrt: 100e-6 # round-trip loss in the cavity
Rot: 0 # phase rotation after cavity
## Variational Output Parameters--------------------------------------------
# Define the output filter cavity chain
# None = ignore the output filter settings
# Chain = apply filter cavity chain
# Optimal = find the best readout phase
OutputFilter:
Type: 'None'
FilterCavity:
fdetune: -30 # detuning [Hz]
L: 4000 # cavity length
Ti: 10e-3 # input mirror trasmission [Power]
Te: 0 # end mirror trasmission
Lrt: 100e-6 # round-trip loss in the cavity
Rot: 0 # phase rotation after cavity