Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
pygwinc
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Lee McCuller
pygwinc
Commits
0c9bed43
Commit
0c9bed43
authored
6 years ago
by
Jameson Graef Rollins
Browse files
Options
Downloads
Patches
Plain Diff
Add A+ model
parent
e23cb416
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
gwinc/ifo/A+.yaml
+272
-0
272 additions, 0 deletions
gwinc/ifo/A+.yaml
with
272 additions
and
0 deletions
gwinc/ifo/A+.yaml
0 → 100644
+
272
−
0
View file @
0c9bed43
# GWINC aLIGO interferometer parameters
#
# parameters for quad pendulum suspension updated 3rd May 2006, NAR
# References:
# LIGO-T000012-00-D
# * Differentiate between silica and sapphire substrate absorption
# * Change ribbon suspension aspect ratio
# * Change pendulum frequency
# References:
# 1. Electro-Optic Handbook, Waynant & Ediger (McGraw-Hill: 1993)
# 2. LIGO/GEO data/experience
# 3. Suspension reference design, LIGO-T000012-00
# 4. Quartz Glass for Optics Data and Properties, Heraeus data sheet,
# numbers for suprasil
# 5. Y.S. Touloukian (ed), Thermophysical Properties of Matter
# (IFI/Plenum,1970)
# 6. Marvin J. Weber (ed) CRC Handbook of laser science and technology,
# Vol 4, Pt 2
# 7. R.S. Krishnan et al.,Thermal Expansion of Crystals, Pergamon Press
# 8. P. Klocek, Handbook of infrared and optical materials, Marcel Decker,
# 1991
# 9. Rai Weiss, electronic log from 5/10/2006
# 10. Wikipedia online encyclopedia, 2006
# 11. D.K. Davies, The Generation and Dissipation of Static Charge on
# dielectrics in a Vacuum, page 29
# 12. Gretarsson & Harry, Gretarsson thesis
# 13. Fejer
# 14. Braginsky
#
# Updated numbers March 2018: LIGO-T1800044
Constants
:
# earth radius
R_earth
:
6.3781e6
# Temperature of the Vacuum
Temp
:
290
# K
Infrastructure
:
Length
:
3995
# m
ResidualGas
:
pressure
:
4.0e-7
# Pa
mass
:
3.35e-27
# kg; Mass of H_2 (ref. 10)
polarizability
:
7.8e-31
# m^3
TCS
:
s_cc
:
7.024
# Watt^-2
s_cs
:
7.321
# Watt^-2
s_ss
:
7.631
# Watt^-2
# The hardest part to model is how efficient the TCS system is in
# compensating this loss. Thus as a simple Ansatz we define the
# TCS efficiency TCSeff as the reduction in effective power that produces
# a phase distortion. E.g. TCSeff=0.99 means that the compensated distortion
# of 1 Watt absorbed is eqivalent to the uncompensated distortion of 10mWatt.
# The above formula thus becomes:
# S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2 * (1-TCSeff)^2
#
# To avoid iterative calculation we define TCS.SCRloss = S as an input
# and calculate TCSeff as an output.
# TCS.SRCloss is incorporated as an additional loss in the SRC
SRCloss
:
0.00
Seismic
:
Site
:
'
LHO'
# LHO or LLO (only used for Newtonian noise)
KneeFrequency
:
10
# Hz; freq where 'flat' noise rolls off
LowFrequencyLevel
:
1e-9
# m/rtHz; seismic noise level below f_knee
Gamma
:
.8
# abruptness of change at f_knee
Rho
:
1.8e3
# kg/m^3; density of the ground nearby
Beta
:
0.6
# quiet times beta: 0.35-0.60
# noisy times beta: 0.15-1.4
Omicron
:
1
# Feedforward cancellation factor
Suspension
:
# 0 for cylindrical suspension
#Type: 'Quad'
Type
:
2
# 0: round, 1: ribbons, 2: tapered
FiberType
:
2
BreakStress
:
750e6
# Pa; ref. K. Strain
Temp
:
290
Silica
:
Rho
:
2200
# Kg/m^3;
C
:
772
# J/Kg/K;
K
:
1.38
# W/m/kg;
Alpha
:
3.9e-7
# 1/K;
dlnEdT
:
1.52e-4
# (1/K), dlnE/dT
Phi
:
4.1e-10
# from G Harry e-mail to NAR 27April06 dimensionless units
Y
:
72e9
# Pa; Youngs Modulus
Dissdepth
:
1.5e-2
# from G Harry e-mail to NAR 27April06
C70Steel
:
Rho
:
7800
C
:
486
K
:
49
Alpha
:
12e-6
dlnEdT
:
-2.5e-4
Phi
:
2e-4
Y
:
212e9
# measured by MB for one set of wires
MaragingSteel
:
Rho
:
7800
C
:
460
K
:
20
Alpha
:
11e-6
dlnEdT
:
0
Phi
:
1e-4
Y
:
187e9
# ref ---- http://design.caltech.edu/Research/MEMS/siliconprop.html
# all properties should be for T ~ 20 K
Silicon
:
Rho
:
2329
# Kg/m^3; density
C
:
300
# J/kg/K heat capacity
K
:
700
# W/m/K thermal conductivity
Alpha
:
1e-10
# 1/K thermal expansion coeff
# from Gysin, et. al. PRB (2004) E(T): E0 - B*T*exp(-T0/T)
# E0: 167.5e9 Pa T0: 317 K B: 15.8e6 Pa/K
dlnEdT
:
-2.0e-5
# (1/K) dlnE/dT T=20K
Phi
:
2e-9
# Nawrodt (2010) loss angle 1/Q
Y
:
1.558e11
# Pa Youngs Modulus
Dissdepth
:
1.5e-3
# 10x smaller surface loss depth (Nawrodt (2010))
# Note stage numbering: mirror is at beginning of stack, not end
#
# last stage length adjusted for d: 10mm and and d_bend = 4mm
# (since 602mm is the CoM separation, and d_bend is accounted for
# in suspQuad, so including it here would double count)
Stage
:
# Stage1
-
Mass
:
39.6
# kg; current numbers May 2006 NAR
Length
:
0.59
# m
Dilution
:
.nan
#
K
:
.nan
# N/m; vertical spring constant
WireRadius
:
.nan
# m
Blade
:
.nan
# blade thickness
NWires
:
4
# Stage2
-
Mass
:
39.6
Length
:
0.341
Dilution
:
106
K
:
5200
WireRadius
:
310e-6
Blade
:
4200e-6
NWires
:
4
# Stage3
-
Mass
:
21.8
Length
:
0.277
Dilution
:
80
K
:
3900
WireRadius
:
350e-6
Blade
:
4600e-6
NWires
:
4
# Stage4
-
Mass
:
22.1
Length
:
0.416
Dilution
:
87
K
:
3400
WireRadius
:
520e-6
Blade
:
4300e-6
NWires
:
2
Ribbon
:
Thickness
:
115e-6
# m
Width
:
1150e-6
# m
Fiber
:
EndLength
:
4.5e-02
EndRadius
:
4e-04
Radius
:
2.05e-04
## Optic Material -------------------------------------------------------
Materials
:
MassRadius
:
0.17
# m;
MassThickness
:
0.200
# m; Peter F 8/11/2005
## Dielectric coating material parameters----------------------------------
Coating
:
## high index material: tantala
Yhighn
:
124e9
Sigmahighn
:
0.28
CVhighn
:
2.1e6
# Crooks et al, Fejer et al
Alphahighn
:
3.6e-6
# 3.6e-6 Fejer et al, 5e-6 from Braginsky
Betahighn
:
1.4e-5
# dn/dT, value Gretarrson (G070161)
ThermalDiffusivityhighn
:
33
# Fejer et al
Phihighn
:
9.0e-5
# tantala mechanical loss
Indexhighn
:
2.06539
## low index material: silica
Ylown
:
72e9
Sigmalown
:
0.17
CVlown
:
1.6412e6
# Crooks et al, Fejer et al
Alphalown
:
5.1e-7
# Fejer et al
Betalown
:
8e-6
# dn/dT, (ref. 14)
ThermalDiffusivitylown
:
1.38
# Fejer et al
Philown
:
1.25e-5
# silica mechanical loss
Indexlown
:
1.45
## Substrate Material parameters--------------------------------------------
Substrate
:
Temp
:
295
c2
:
7.6e-12
# Coeff of freq depend. term for bulk mechanical loss, 7.15e-12 for Sup2
MechanicalLossExponent
:
0.77
# Exponent for freq dependence of silica loss, 0.822 for Sup2
Alphas
:
5.2e-12
# Surface loss limit (ref. 12)
MirrorY
:
7.27e10
# N/m^2; Youngs modulus (ref. 4)
MirrorSigma
:
0.167
# Kg/m^3; Poisson ratio (ref. 4)
MassDensity
:
2.2e3
# Kg/m^3; (ref. 4)
MassAlpha
:
3.9e-7
# 1/K; thermal expansion coeff. (ref. 4)
MassCM
:
739
# J/Kg/K; specific heat (ref. 4)
MassKappa
:
1.38
# J/m/s/K; thermal conductivity (ref. 4)
RefractiveIndex
:
1.45
# mevans 25 Apr 2008
## Laser-------------------------------------------------------------------
Laser
:
Wavelength
:
1.064e-6
# m
Power
:
125
# W
## Optics------------------------------------------------------------------
Optics
:
PhotoDetectorEfficiency
:
0.9
# photo-detector quantum efficiency
Loss
:
37.5e-6
# average per mirror power loss
BSLoss
:
0.5e-3
# power loss near beamsplitter
coupling
:
1.0
# mismatch btwn arms & SRC modes; used to
SubstrateAbsorption
:
0.5e-4
# 1/m; bulk absorption coef (ref. 2)
pcrit
:
10
# W; tolerable heating power (factor 1 ATC)
Quadrature
:
dc
:
1.5707963
# pi/2 # demod/detection/homodyne phase
ITM
:
Transmittance
:
0.014
CoatingThicknessLown
:
0.308
CoatingThicknessCap
:
0.5
CoatingAbsorption
:
0.5e-6
ETM
:
Transmittance
:
5e-6
CoatingThicknessLown
:
0.27
CoatingThicknessCap
:
0.5
PRM
:
Transmittance
:
0.03
SRM
:
Transmittance
:
0.325
CavityLength
:
55
# m, ITM to SRM distance
Tunephase
:
0.0
# SEC tuning
Curvature
:
# ROC
ITM
:
1970
ETM
:
2192
## Squeezer Parameters------------------------------------------------------
# Define the squeezing you want:
# None: ignore the squeezer settings
# Freq Independent: nothing special (no filter cavties)
# Freq Dependent = applies the specified filter cavites
# Optimal = find the best squeeze angle, assuming no output filtering
# OptimalOptimal = optimal squeeze angle, assuming optimal readout phase
Squeezer
:
Type
:
'
Freq
Dependent'
AmplitudedB
:
12
# SQZ amplitude [dB]
InjectionLoss
:
0.05
# power loss to sqz
SQZAngle
:
0
# SQZ phase [radians]
# Parameters for frequency dependent squeezing
FilterCavity
:
L
:
300
# cavity length
Te
:
1e-6
# end mirror trasmission
Lrt
:
60e-6
# round-trip loss in the cavity
Rot
:
0
# phase rotation after cavity
fdetune
:
-45.78
# detuning [Hz]
Ti
:
1.2e-3
# input mirror trasmission [Power]
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment