Skip to content
Snippets Groups Projects
hyper_parameter_example.py 2.87 KiB
Newer Older
#!/usr/bin/env python
An example of how to use bilby to perform parameter estimation for hyper params
import matplotlib.pyplot as plt
import numpy as np
from bilby.core.likelihood import GaussianLikelihood
from bilby.core.prior import Uniform
from bilby.core.result import make_pp_plot
from bilby.core.sampler import run_sampler
Gregory Ashton's avatar
Gregory Ashton committed
from bilby.core.utils import check_directory_exists_and_if_not_mkdir
from bilby.hyper.likelihood import HyperparameterLikelihood
outdir = "outdir"
Gregory Ashton's avatar
Gregory Ashton committed
check_directory_exists_and_if_not_mkdir(outdir)
# Define a model to fit to each data set
def model(x, c0, c1):
Colm Talbot's avatar
Colm Talbot committed
    return c0 + c1 * x
N = 10
x = np.linspace(0, 10, N)
sigma = 1
labels = ["a", "b", "c", "d"]
true_mu_c0 = 5
true_sigma_c0 = 1

fig1, ax1 = plt.subplots()
fig2, ax2 = plt.subplots()
results = list()
    c0 = np.random.normal(true_mu_c0, true_sigma_c0)
    c1 = np.random.uniform(-1, 1)
    injection_parameters = dict(c0=c0, c1=c1)
    data = model(x, **injection_parameters) + np.random.normal(0, sigma, N)
    line = ax1.plot(x, data, "-x", label=labels[i])
    likelihood = GaussianLikelihood(x, data, model, sigma)
    priors = dict(c0=Uniform(-10, 10, "c0"), c1=Uniform(-10, 10, "c1"))
    result = run_sampler(
        likelihood=likelihood,
        priors=priors,
        sampler="nestle",
        nlive=1000,
        outdir=outdir,
        verbose=False,
        label="individual_{}".format(i),
        save=False,
        injection_parameters=injection_parameters,
    )
    ax2.hist(
        result.posterior.c0,
        color=line[0].get_color(),
        density=True,
        alpha=0.5,
        label=labels[i],
    )
    results.append(result)
ax1.set_xlabel("x")
ax1.set_ylabel("y(x)")
fig1.savefig("outdir/hyper_parameter_data.png")
ax2.set_xlabel("c0")
ax2.set_ylabel("density")
fig2.savefig("outdir/hyper_parameter_combined_posteriors.png")
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
def hyper_prior(dataset, mu, sigma):
    return (
        np.exp(-((dataset["c0"] - mu) ** 2) / (2 * sigma ** 2))
        / (2 * np.pi * sigma ** 2) ** 0.5
    )
samples = [result.posterior for result in results]
for sample in samples:
    sample["prior"] = 1 / 20
evidences = [result.log_evidence for result in results]
hp_likelihood = HyperparameterLikelihood(
    posteriors=samples,
    hyper_prior=hyper_prior,
    log_evidences=evidences,
    max_samples=500,
)

hp_priors = dict(
    mu=Uniform(-10, 10, "mu", r"$\mu_{c0}$"),
    sigma=Uniform(0, 10, "sigma", r"$\sigma_{c0}$"),
result = run_sampler(
    likelihood=hp_likelihood,
    priors=hp_priors,
    sampler="dynesty",
    nlive=1000,
    use_ratio=False,
    outdir=outdir,
    label="hyper_parameter",
    verbose=True,
    clean=True,
)
result.plot_corner(truth=dict(mu=true_mu_c0, sigma=true_sigma_c0))
make_pp_plot(results, filename=outdir + "/hyper_parameter_pp.png")