Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bilby
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
lscsoft
bilby
Commits
45e60bfd
Commit
45e60bfd
authored
6 years ago
by
Rhys Green
Browse files
Options
Downloads
Patches
Plain Diff
adding gregs patch
parent
f569efd3
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!322
Adding PTMCMC sampler
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
bilby/core/sampler/ptmcmc.py
+69
-96
69 additions, 96 deletions
bilby/core/sampler/ptmcmc.py
with
69 additions
and
96 deletions
bilby/core/sampler/ptmcmc.py
+
69
−
96
View file @
45e60bfd
from
__future__
import
absolute_import
,
print_function
import
glob
import
os
import
shutil
import
numpy
as
np
# from pandas import DataFrame
# from ..utils import logger, get_progress_bar
from
.base_sampler
import
MCMCSampler
,
SamplerNotInstalledError
from
..utils
import
logger
,
check_directory_exists_and_if_not_mkdir
class
PTMCMCSampler
(
MCMCSampler
):
"""
bilby wrapper PTMCMC (https://github.com/jellis18/PTMCMCSampler/)
"""
bilby wrapper
of
PTMCMC (https://github.com/jellis18/PTMCMCSampler/)
All positional and keyword arguments (i.e., the args and kwargs) passed to
`run_sampler` will be propagated to `PTMCMCSampler.PTMCMCSampler`, see
...
...
@@ -17,26 +20,25 @@ class PTMCMCSampler(MCMCSampler):
Other Parameters
----------------
Niter: int (2*10**4 +1)
Niter: int (2*10**4 +
1)
The number of mcmc steps
burn: int (5 * 10**3)
If given, the fixed number of steps to discard as burn-in
thin: int (1)
The number of steps before saving the sample to the chain
custom_proposals: dict (None)
this is to add any proposal to the array of proposal,
this must be in the form of a dictionary with the
name of the proposal, then a list containing the jump
function and the weight e.g {
'
name
'
: [function , weight]}
see (https://github.com/rgreen1995/PTMCMCSampler/blob/master/examples/simple.ipynb)
and (http://jellis18.github.io/PTMCMCSampler/PTMCMCSampler.html#ptmcmcsampler-ptmcmcsampler-module)
for examples and more info.
logl_grad: func (None)
Gradient of likelihood if known (default = None)
logp_grad: func (None)
Gradient of prior if known (default = None)
verbose: bool (True)
Update current run-status to the screen
Add dictionary of proposals to the array of proposals, this must be in
the form of a dictionary with the name of the proposal, then a list
containing the jump function and the weight e.g {
'
name
'
: [function ,
weight]} see
(https://github.com/rgreen1995/PTMCMCSampler/blob/master/examples/simple.ipynb)
and
(http://jellis18.github.io/PTMCMCSampler/PTMCMCSampler.html#ptmcmcsampler-ptmcmcsampler-module)
for examples and more info. logl_grad: func (None) Gradient of
likelihood if known (default = None) logp_grad: func (None) Gradient
of prior if known (default = None) verbose: bool (True) Update current
run-status to the screen
"""
default_kwargs
=
{
'
p0
'
:
None
,
'
Niter
'
:
2
*
10
**
4
+
1
,
'
neff
'
:
10
**
4
,
...
...
@@ -47,14 +49,17 @@ class PTMCMCSampler(MCMCSampler):
'
HMCweight
'
:
0
,
'
MALAweight
'
:
0
,
'
NUTSweight
'
:
0
,
'
HMCstepsize
'
:
0.1
,
'
HMCsteps
'
:
300
,
'
groups
'
:
None
,
'
custom_proposals
'
:
None
,
'
loglargs
'
:
{},
'
loglkwargs
'
:
{},
'
logpargs
'
:
{},
'
logpkwargs
'
:
{},
'
logl_grad
'
:
None
,
'
logp_grad
'
:
None
,
'
outDir
'
:
'
./temp
'
}
'
loglargs
'
:
{},
'
loglkwargs
'
:
{},
'
logpargs
'
:
{},
'
logpkwargs
'
:
{},
'
logl_grad
'
:
None
,
'
logp_grad
'
:
None
,
'
outDir
'
:
None
}
def
__init__
(
self
,
likelihood
,
priors
,
outdir
=
'
outdir
'
,
label
=
'
label
'
,
use_ratio
=
False
,
plot
=
False
,
skip_import_verification
=
False
,
pos0
=
None
,
nburn
=
None
,
burn_in_fraction
=
0.25
,
**
kwargs
):
def
__init__
(
self
,
likelihood
,
priors
,
outdir
=
'
outdir
'
,
label
=
'
label
'
,
use_ratio
=
False
,
plot
=
False
,
skip_import_verification
=
False
,
pos0
=
None
,
burn_in_fraction
=
0.25
,
**
kwargs
):
MCMCSampler
.
__init__
(
self
,
likelihood
=
likelihood
,
priors
=
priors
,
outdir
=
outdir
,
label
=
label
,
use_ratio
=
use_ratio
,
plot
=
plot
,
MCMCSampler
.
__init__
(
self
,
likelihood
=
likelihood
,
priors
=
priors
,
outdir
=
outdir
,
label
=
label
,
use_ratio
=
use_ratio
,
plot
=
plot
,
skip_import_verification
=
skip_import_verification
,
**
kwargs
)
...
...
@@ -62,8 +67,9 @@ class PTMCMCSampler(MCMCSampler):
self
.
likelihood
=
likelihood
self
.
priors
=
priors
# PTMCMC is imported with Caps so need to overwrite this.
def
_verify_external_sampler
(
self
):
# PTMCMC is imported with Caps so need to overwrite the parent function
# which forces `__name__.lower()
external_sampler_name
=
self
.
__class__
.
__name__
try
:
self
.
external_sampler
=
__import__
(
external_sampler_name
)
...
...
@@ -71,31 +77,15 @@ class PTMCMCSampler(MCMCSampler):
raise
SamplerNotInstalledError
(
"
Sampler {} is not installed on this system
"
.
format
(
external_sampler_name
))
@property
def
kwargs
(
self
):
"""
Ensures that proper keyword arguments are used for the PTMCMC sampler.
Returns
-------
dict: Keyword arguments used for the PTMCMC
"""
return
self
.
__kwargs
@kwargs.setter
def
kwargs
(
self
,
kwargs
):
self
.
__kwargs
=
self
.
default_kwargs
.
copy
()
self
.
__kwargs
.
update
(
kwargs
)
self
.
_verify_kwargs_against_default_kwargs
()
# def _translate_kwargs(self, kwargs):
# if 'nwalkers' not in kwargs:
# for equiv in self.nwalkers_equiv_kwargs:
# if equiv in kwargs:
# kwargs['nwalkers'] = kwargs.pop(equiv)
# if 'iterations' not in kwargs:
# if 'nsteps' in kwargs:
# kwargs['iterations'] = kwargs.pop('nsteps')
def
_translate_kwargs
(
self
,
kwargs
):
if
'
Niter
'
not
in
kwargs
:
for
equiv
in
self
.
nsteps_equiv_kwargs
:
if
equiv
in
kwargs
:
kwargs
[
'
Niter
'
]
=
kwargs
.
pop
(
equiv
)
if
'
burn
'
not
in
kwargs
:
for
equiv
in
self
.
nburn_equiv_kwargs
:
if
equiv
in
kwargs
:
kwargs
[
'
burn
'
]
=
kwargs
.
pop
(
equiv
)
@property
def
custom_proposals
(
self
):
...
...
@@ -113,6 +103,8 @@ class PTMCMCSampler(MCMCSampler):
'
outDir
'
,
'
verbose
'
]
init_kwargs
=
{
key
:
self
.
kwargs
[
key
]
for
key
in
keys
}
if
init_kwargs
[
'
outDir
'
]
is
None
:
init_kwargs
[
'
outDir
'
]
=
'
{}/ptmcmc_temp_{}/
'
.
format
(
self
.
outdir
,
self
.
label
)
return
init_kwargs
@property
...
...
@@ -138,52 +130,44 @@ class PTMCMCSampler(MCMCSampler):
sampler_kwargs
=
{
key
:
self
.
kwargs
[
key
]
for
key
in
keys
}
return
sampler_kwargs
@property
def
nsteps
(
self
):
return
self
.
kwargs
[
'
Niter
'
]
@property
def
nburn
(
self
):
return
self
.
kwargs
[
'
burn
'
]
@staticmethod
def
_import_external_sampler
():
from
PTMCMCSampler
import
PTMCMCSampler
import
glob
import
os
# OPTIMIZE:
# import acor
# from mpi4py import MPI
# return MPI, PTMCMCSampler
return
PTMCMCSampler
,
glob
,
os
return
PTMCMCSampler
def
run_sampler
(
self
):
# MPI , PTMCMCSampler = self._import_external_sampler()
PTMCMCSampler
,
glob
,
os
=
self
.
_import_external_sampler
()
init_kwargs
=
self
.
sampler_init_kwargs
sampler_kwargs
=
self
.
sampler_function_kwargs
PTMCMCSampler
=
self
.
_import_external_sampler
()
sampler
=
PTMCMCSampler
.
PTSampler
(
ndim
=
self
.
ndim
,
logp
=
self
.
log_prior
,
logl
=
self
.
log_likelihood
,
cov
=
np
.
eye
(
self
.
ndim
),
**
init_kwargs
)
**
self
.
sampler_
init_kwargs
)
if
self
.
custom_proposals
is
not
None
:
for
proposal
in
self
.
custom_proposals
:
print
(
'
a
dding
'
+
str
(
proposal
)
+
'
to proposals with weight
:
'
+
str
(
self
.
custom_proposals
[
proposal
][
1
]))
logger
.
info
(
'
A
dding
{}
to proposals with weight
{}
'
.
format
(
proposal
,
self
.
custom_proposals
[
proposal
][
1
]))
sampler
.
addProposalToCycle
(
self
.
custom_proposals
[
proposal
][
0
],
self
.
custom_proposals
[
proposal
][
1
])
else
:
pass
sampler
.
sample
(
p0
=
self
.
p0
,
**
sampler_kwargs
)
# The next bit is very hacky, the ptmcmc writes the samples and
# other info to file so here i read this info, write it to the result
# object then delete it
data
=
np
.
loadtxt
(
'
temp/chain_1.txt
'
)
jumpfiles
=
glob
.
glob
(
'
temp/*jump.txt
'
)
sampler
.
sample
(
p0
=
self
.
p0
,
**
self
.
sampler_function_kwargs
)
samples
,
meta
,
loglike
=
self
.
__read_in_data
()
self
.
result
.
nburn
=
self
.
sampler_function_kwargs
[
'
burn
'
]
self
.
result
.
samples
=
samples
[
self
.
result
.
nburn
:]
self
.
meta_data
[
'
sampler_meta
'
]
=
meta
self
.
result
.
log_likelihood_evaluations
=
loglike
[
self
.
result
.
nburn
:]
self
.
result
.
sampler_output
=
np
.
nan
self
.
result
.
walkers
=
np
.
nan
self
.
result
.
log_evidence
=
np
.
nan
self
.
result
.
log_evidence_err
=
np
.
nan
return
self
.
result
def
__read_in_data
(
self
):
"""
Read the data stored by PTMCMC to disk
"""
temp_outDir
=
self
.
sampler_init_kwargs
[
'
outDir
'
]
data
=
np
.
loadtxt
(
'
{}/chain_1.txt
'
.
format
(
temp_outDir
))
jumpfiles
=
glob
.
glob
(
'
{}/*jump.txt
'
.
format
(
temp_outDir
))
jumps
=
map
(
np
.
loadtxt
,
jumpfiles
)
samples
=
data
[:,
:
-
4
]
loglike
=
data
[:,
-
3
]
meta
=
{}
jump_accept
=
{}
for
ct
,
j
in
enumerate
(
jumps
):
label
=
jumpfiles
[
ct
].
split
(
'
/
'
)[
-
1
].
split
(
'
_jump.txt
'
)[
0
]
...
...
@@ -191,24 +175,13 @@ class PTMCMCSampler(MCMCSampler):
PT_swap
=
{
'
swap_accept
'
:
data
[
-
1
]}
tot_accept
=
{
'
tot_accept
'
:
data
[
-
2
]}
log_post
=
{
'
log_post
'
:
data
[:,
-
4
]}
meta
=
{}
meta
[
'
tot_accept
'
]
=
tot_accept
meta
[
'
PT_swap
'
]
=
PT_swap
meta
[
'
proposals
'
]
=
jump_accept
meta
[
'
log_post
'
]
=
log_post
samples
=
data
[:,
:
-
4
]
for
f
in
glob
.
glob
(
'
./temp/*
'
):
os
.
remove
(
f
)
os
.
rmdir
(
'
temp
'
)
shutil
.
rmtree
(
temp_outDir
)
return
samples
,
meta
,
loglike
self
.
result
.
nburn
=
self
.
nburn
self
.
result
.
samples
=
samples
[
self
.
nburn
:]
self
.
meta_data
[
'
sampler_meta
'
]
=
meta
self
.
result
.
log_likelihood_evaluations
=
loglike
[
self
.
nburn
:]
# self.calculate_autocorrelation(sampler.chain.reshape((-1, self.ndim)))
# self.print_nburn_logging_info()
self
.
result
.
sampler_output
=
np
.
nan
self
.
result
.
walkers
=
np
.
nan
self
.
result
.
log_evidence
=
np
.
nan
self
.
result
.
log_evidence_err
=
np
.
nan
return
self
.
result
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment