Skip to content
Snippets Groups Projects
Commit 7809b0c7 authored by Colm Talbot's avatar Colm Talbot
Browse files

add example of using calibration

parent 99bb5216
No related branches found
No related tags found
1 merge request!113Add calibration
Pipeline #
#!/bin/python
"""
Tutorial to demonstrate running parameter estimation on a reduced parameter space for an injected signal.
This example estimates the masses using a uniform prior in both component masses and distance using a uniform in
comoving volume prior on luminosity distance between luminosity distances of 100Mpc and 5Gpc, the cosmology is WMAP7.
"""
from __future__ import division, print_function
import numpy as np
import tupak
# Set the duration and sampling frequency of the data segment that we're going to inject the signal into
duration = 4.
sampling_frequency = 2048.
# Specify the output directory and the name of the simulation.
outdir = 'outdir'
label = 'calibration'
tupak.core.utils.setup_logger(outdir=outdir, label=label)
# Set up a random seed for result reproducibility. This is optional!
np.random.seed(88170235)
# We are going to inject a binary black hole waveform. We first establish a dictionary of parameters that
# includes all of the different waveform parameters, including masses of the two black holes (mass_1, mass_2),
# spins of both black holes (a, tilt, phi), etc.
injection_parameters = dict(mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, phi_12=1.7, phi_jl=0.3,
luminosity_distance=2000., iota=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413,
ra=1.375, dec=-1.2108)
# Fixed arguments passed into the source model
waveform_arguments = dict(waveform_approximant='IMRPhenomPv2',
reference_frequency=50.)
# Create the waveform_generator using a LAL BinaryBlackHole source function
waveform_generator = tupak.WaveformGenerator(duration=duration,
sampling_frequency=sampling_frequency,
frequency_domain_source_model=tupak.gw.source.lal_binary_black_hole,
parameters=injection_parameters,
waveform_arguments=waveform_arguments)
hf_signal = waveform_generator.frequency_domain_strain()
# Set up interferometers. In this case we'll use three interferometers (LIGO-Hanford (H1), LIGO-Livingston (L1),
# and Virgo (V1)). These default to their design sensitivity
ifos = tupak.gw.detector.InterferometerSet(['H1', 'L1', 'V1'])
for ifo in ifos:
injection_parameters.update({'recalib_{}_amplitude_{}'.format(ifo.name, ii): 0.1 for ii in range(5)})
injection_parameters.update({'recalib_{}_phase_{}'.format(ifo.name, ii): 0.01 for ii in range(5)})
ifo.calibration_model = tupak.gw.calibration.CubicSpline(
prefix='recalib_{}_'.format(ifo.name), minimum_frequency=ifo.minimum_frequency,
maximum_frequency=ifo.maximum_frequency, n_points=5)
ifos.set_strain_data_from_power_spectral_densities(sampling_frequency=sampling_frequency, duration=duration)
ifos.inject_signal(parameters=injection_parameters, waveform_generator=waveform_generator)
# IFOs = [tupak.gw.detector.get_interferometer_with_fake_noise_and_injection(
# name, injection_polarizations=hf_signal, injection_parameters=injection_parameters, duration=duration,
# sampling_frequency=sampling_frequency, outdir=outdir) for name in ['H1', 'L1']]
# Set up prior, which is a dictionary
# By default we will sample all terms in the signal models. However, this will take a long time for the calculation,
# so for this example we will set almost all of the priors to be equall to their injected values. This implies the
# prior is a delta function at the true, injected value. In reality, the sampler implementation is smart enough to
# not sample any parameter that has a delta-function prior.
# The above list does *not* include mass_1, mass_2, iota and luminosity_distance, which means those are the parameters
# that will be included in the sampler. If we do nothing, then the default priors get used.
priors = tupak.gw.prior.BBHPriorSet()
priors['geocent_time'] = tupak.core.prior.Uniform(
minimum=injection_parameters['geocent_time'] - 1, maximum=injection_parameters['geocent_time'] + 1,
name='geocent_time', latex_label='$t_c$')
for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'psi', 'ra', 'dec', 'geocent_time', 'phase',
'iota', 'luminosity_distance', 'mass_1', 'mass_2']:
priors[key] = injection_parameters[key]
for key in injection_parameters:
if 'recalib' in key:
priors[key] = injection_parameters[key]
for name in ['recalib_H1_amplitude_0', 'recalib_H1_amplitude_1', 'recalib_H1_amplitude_2']:
priors[name] = tupak.prior.Gaussian(mu=0, sigma=0.2, name=name, latex_label='H1 $A_{}$'.format(name[-1]))
# Initialise the likelihood by passing in the interferometer data (IFOs) and the waveoform generator
likelihood = tupak.GravitationalWaveTransient(interferometers=ifos, waveform_generator=waveform_generator,
time_marginalization=False, phase_marginalization=False,
distance_marginalization=False, prior=priors)
# Run sampler. In this case we're going to use the `dynesty` sampler
result = tupak.run_sampler(likelihood=likelihood, priors=priors, sampler='dynesty', npoints=1000,
injection_parameters=injection_parameters, outdir=outdir, label=label)
# make some plots of the outputs
result.plot_corner()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment