Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bilby
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
lscsoft
bilby
Commits
837c7497
Commit
837c7497
authored
6 years ago
by
Rhys Green
Browse files
Options
Downloads
Patches
Plain Diff
adding custom proposals feature
parent
8aa30731
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!322
Adding PTMCMC sampler
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
bilby/core/sampler/ptmcmc.py
+60
-24
60 additions, 24 deletions
bilby/core/sampler/ptmcmc.py
with
60 additions
and
24 deletions
bilby/core/sampler/ptmcmc.py
+
60
−
24
View file @
837c7497
...
...
@@ -31,15 +31,16 @@ class PTMCMCSampler(MCMCSampler):
verbose - Update current run-status to the screen (default=False)
"""
default_kwargs
=
{
'
p0
'
:
None
,
'
Niter
'
:
10
**
4
,
'
ladder
'
:
None
,
'
Tmin
'
:
1
,
'
Tmax
'
:
None
,
'
Tskip
'
:
100
,
'
isave
'
:
1000
,
'
NUTSweight
'
:
20
,
'
HMCweight
'
:
20
,
'
MALAweight
'
:
0
,
'
burn
'
:
10000
,
'
HMCstepsize
'
:
0.1
,
'
HMCsteps
'
:
300
,
'
neff
'
:
10
**
4
,
'
burn
'
:
10
**
4
,
'
thin
'
:
1
,
'
covUpdate
'
:
500
,
'
SCAMweight
'
:
20
,
'
AMweight
'
:
20
,
'
DEweight
'
:
50
,
'
cov
'
:
np
.
eye
(
1
)
,
'
loglargs
'
:
{}
,
'
loglkwargs
'
:
{}
,
'
logpargs
'
:
{},
'
logpkwargs
'
:
{}
,
'
logl_grad
'
:
None
,
'
logp_grad
'
:
None
,
'
outDir
'
:
'
./ptmcmc_test
'
,
'
verbose
'
:
False
}
default_kwargs
=
{
'
p0
'
:
None
,
'
Niter
'
:
5
*
10
**
4
,
'
neff
'
:
10
**
4
,
'
burn
'
:
10
**
4
,
'
verbose
'
:
False
,
'
ladder
'
:
None
,
'
Tmin
'
:
1
,
'
Tmax
'
:
None
,
'
Tskip
'
:
100
,
'
isave
'
:
1000
,
'
thin
'
:
1
,
'
covUpdate
'
:
500
,
'
SCAMweight
'
:
20
,
'
AMweight
'
:
20
,
'
DEweight
'
:
20
,
'
HMCweight
'
:
0
,
'
MALAweight
'
:
0
,
'
NUTSweight
'
:
0
,
'
HMCstepsize
'
:
0.1
,
'
HMCsteps
'
:
300
,
'
groups
'
:
None
,
'
custom_proposals
'
:
None
,
'
loglargs
'
:
{}
,
'
loglkwargs
'
:
{}
,
'
logpargs
'
:
{},
'
logpkwargs
'
:
{}
,
'
logl_grad
'
:
None
,
'
logp_grad
'
:
None
,
'
outDir
'
:
'
./ptmcmc_test
'
}
def
__init__
(
self
,
likelihood
,
priors
,
outdir
=
'
outdir
'
,
label
=
'
label
'
,
use_ratio
=
False
,
plot
=
False
,
skip_import_verification
=
False
,
pos0
=
None
,
nburn
=
None
,
burn_in_fraction
=
0.25
,
**
kwargs
):
...
...
@@ -79,15 +80,17 @@ class PTMCMCSampler(MCMCSampler):
# if 'nsteps' in kwargs:
# kwargs['iterations'] = kwargs.pop('nsteps')
@property
def
custom_proposals
(
self
):
return
self
.
kwargs
[
'
custom_proposals
'
]
@property
def
sampler_init_kwargs
(
self
):
keys
=
[
'
groups
'
,
'
loglargs
'
,
'
logp_grad
'
,
'
logpkwargs
'
,
'
cov
'
,
'
loglkwargs
'
,
'
logl_grad
'
,
'
logpargs
'
,
...
...
@@ -116,7 +119,8 @@ class PTMCMCSampler(MCMCSampler):
'
Tskip
'
,
'
HMCsteps
'
,
'
Tmax
'
,
'
DEweight
'
]
'
DEweight
'
]
sampler_kwargs
=
{
key
:
self
.
kwargs
[
key
]
for
key
in
keys
}
return
sampler_kwargs
...
...
@@ -124,38 +128,70 @@ class PTMCMCSampler(MCMCSampler):
def
nsteps
(
self
):
return
self
.
kwargs
[
'
Niter
'
]
@property
def
nburn
(
self
):
return
self
.
kwargs
[
'
burn
'
]
@nsteps.setter
def
nsteps
(
self
,
nsteps
):
self
.
kwargs
[
'
Niter
'
]
=
nsteps
@nburn.setter
def
nburn
(
self
,
nsteps
):
self
.
kwargs
[
'
burn
'
]
=
nburn
@staticmethod
def
_import_external_sampler
():
from
PTMCMCSampler
import
PTMCMCSampler
import
glob
import
os
# OPTIMIZE:
#import acor
#from mpi4py import MPI
#return MPI, PTMCMCSampler
return
PTMCMCSampler
return
PTMCMCSampler
,
glob
,
os
def
run_sampler
(
self
):
#MPI , PTMCMCSampler = self._import_external_sampler()
PTMCMCSampler
=
self
.
_import_external_sampler
()
#tqdm = get_progress_bar()
#sampler = emcee.EnsembleSampler(dim=self.ndim, lnpostfn=self.lnpostfn, **self.sampler_init_kwargs)
PTMCMCSampler
,
glob
,
os
=
self
.
_import_external_sampler
()
init_kwargs
=
self
.
sampler_init_kwargs
sampler_kwargs
=
self
.
sampler_function_kwargs
sampler
=
PTMCMCSampler
.
PTSampler
(
ndim
=
self
.
ndim
,
logp
=
self
.
log_prior
,
logl
=
self
.
log_likelihood
,
**
init_kwargs
)
logl
=
self
.
log_likelihood
,
cov
=
np
.
eye
(
self
.
ndim
),
**
init_kwargs
)
tqdm
=
get_progress_bar
()
print
(
self
.
nsteps
)
sampler
.
sample
(
p0
=
self
.
p0
,
**
sampler_kwargs
)
if
self
.
custom_proposals
is
not
None
:
for
proposal
in
self
.
custom_proposals
:
print
(
'
adding
'
+
str
(
proposal
)
+
'
to proposals with weight:
'
+
str
(
self
.
custom_proposals
[
proposal
][
1
]))
sampler
.
addProposalToCycle
(
self
.
custom_proposals
[
proposal
][
0
]
,
self
.
custom_proposals
[
proposal
][
1
])
else
:
pass
sampler
.
sample
(
p0
=
self
.
p0
,
**
sampler_kwargs
)
#### The next bit is very hacky, the ptmcmc writes the samples and
#### other info to file so here i read this info, write it to the result
#### object then delete it
data
=
np
.
loadtxt
(
'
ptmcmc_test/chain_1.txt
'
)
#jumpfiles = glob.glob('ptmcmc_test/*jump.txt')
#jumps = map(np.loadtxt, jumpfiles)
samples
=
data
[:,:
-
4
]
log_post
=
data
[:,
-
4
]
loglike
=
data
[:,
-
3
]
acceptance_rate
=
data
[:,
-
2
]
pt_swap_accept
=
data
[:,
-
1
]
for
f
in
glob
.
glob
(
'
./ptmcmc_test/*
'
):
os
.
remove
(
f
)
os
.
rmdir
(
'
ptmcmc_test
'
)
self
.
result
.
sampler_output
=
np
.
nan
self
.
calculate_autocorrelation
(
sampler
.
chain
.
reshape
((
-
1
,
self
.
ndim
)))
self
.
print_nburn_logging_info
()
#
self.calculate_autocorrelation(sampler.chain.reshape((-1, self.ndim)))
#
self.print_nburn_logging_info()
self
.
result
.
nburn
=
self
.
nburn
self
.
result
.
samples
=
sampler
.
chain
[:,
self
.
nburn
:,
:].
reshape
((
-
1
,
self
.
ndim
))
self
.
result
.
walkers
=
sampler
.
chain
self
.
result
.
samples
=
samples
[
self
.
nburn
:]
#### Walkers isn't really applicable here but appears to be needed to
#### turn samples into data frame
self
.
result
.
walkers
=
samples
[
self
.
nburn
:]
self
.
result
.
log_evidence
=
np
.
nan
self
.
result
.
log_evidence_err
=
np
.
nan
return
self
.
result
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment