Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bilby
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
lscsoft
bilby
Commits
9f48a86b
Commit
9f48a86b
authored
6 years ago
by
Colm Talbot
Browse files
Options
Downloads
Patches
Plain Diff
reformat different parameter example
parent
0c7678dd
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!195
Improve conversion / change internal parameter logic
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
examples/injection_examples/change_sampled_parameters.py
+31
-19
31 additions, 19 deletions
examples/injection_examples/change_sampled_parameters.py
with
31 additions
and
19 deletions
examples/injection_examples/change_sampled_parameters.py
+
31
−
19
View file @
9f48a86b
#!/
bin/
python
#!/
usr/bin/env
python
"""
Tutorial to demonstrate running parameter estimation sampling in non-standard parameters for an injected signal.
Tutorial to demonstrate running parameter estimation sampling in non-standard
parameters for an injected signal.
This example estimates the masses using a uniform prior in chirp mass, mass ratio and redshift.
This example estimates the masses using a uniform prior in chirp mass,
mass ratio and redshift.
The cosmology is according to the Planck 2015 data release.
"""
from
__future__
import
division
,
print_function
...
...
@@ -18,9 +20,10 @@ outdir = 'outdir'
np
.
random
.
seed
(
151226
)
injection_parameters
=
dict
(
mass_1
=
36.
,
mass_2
=
29.
,
a_1
=
0.4
,
a_2
=
0.3
,
tilt_1
=
0.5
,
tilt_2
=
1.0
,
phi_12
=
1.7
,
phi_jl
=
0.3
,
luminosity_distance
=
500
,
iota
=
0.4
,
psi
=
2.659
,
phase
=
1.3
,
geocent_time
=
1126259642.413
,
ra
=
1.375
,
dec
=-
1.2108
)
injection_parameters
=
dict
(
mass_1
=
36.
,
mass_2
=
29.
,
a_1
=
0.4
,
a_2
=
0.3
,
tilt_1
=
0.5
,
tilt_2
=
1.0
,
phi_12
=
1.7
,
phi_jl
=
0.3
,
luminosity_distance
=
500
,
iota
=
0.4
,
psi
=
2.659
,
phase
=
1.3
,
geocent_time
=
1126259642.413
,
ra
=
1.375
,
dec
=-
1.2108
)
waveform_arguments
=
dict
(
waveform_approximant
=
'
IMRPhenomPv2
'
,
reference_frequency
=
50.
)
...
...
@@ -29,35 +32,44 @@ waveform_arguments = dict(waveform_approximant='IMRPhenomPv2',
waveform_generator
=
tupak
.
gw
.
waveform_generator
.
WaveformGenerator
(
sampling_frequency
=
sampling_frequency
,
duration
=
duration
,
frequency_domain_source_model
=
tupak
.
gw
.
source
.
lal_binary_black_hole
,
parameter_conversion
=
tupak
.
gw
.
conversion
.
convert_to_lal_binary_black_hole_parameters
,
non_standard_sampling_parameter_keys
=
[
'
chirp_mass
'
,
'
mass_ratio
'
,
'
redshift
'
]
,
parameter_conversion
=
tupak
.
gw
.
conversion
.
convert_to_lal_binary_black_hole_parameters
,
parameters
=
injection_parameters
,
waveform_arguments
=
waveform_arguments
)
hf_signal
=
waveform_generator
.
frequency_domain_strain
()
# Set up interferometers.
IFOs
=
[
tupak
.
gw
.
detector
.
get_interferometer_with_fake_noise_and_injection
(
name
,
injection_polarizations
=
hf_signal
,
injection_parameters
=
injection_parameters
,
duration
=
duration
,
sampling_frequency
=
sampling_frequency
,
outdir
=
outdir
)
for
name
in
[
'
H1
'
,
'
L1
'
,
'
V1
'
]]
ifos
=
tupak
.
gw
.
detector
.
InterferometerList
([
'
H1
'
,
'
L1
'
,
'
V1
'
,
'
K1
'
])
ifos
.
set_strain_data_from_power_spectral_densities
(
sampling_frequency
=
sampling_frequency
,
duration
=
duration
,
start_time
=
injection_parameters
[
'
geocent_time
'
]
-
3
)
ifos
.
inject_signal
(
waveform_generator
=
waveform_generator
,
parameters
=
injection_parameters
)
# Set up prior
priors
=
tupak
.
gw
.
prior
.
BBHPriorSet
()
priors
.
pop
(
'
mass_1
'
)
priors
.
pop
(
'
mass_2
'
)
priors
.
pop
(
'
luminosity_distance
'
)
priors
[
'
chirp_mass
'
]
=
tupak
.
prior
.
Uniform
(
name
=
'
chirp_mass
'
,
latex_label
=
'
$m_c$
'
,
minimum
=
13
,
maximum
=
45
)
priors
[
'
mass_ratio
'
]
=
tupak
.
prior
.
Uniform
(
name
=
'
mass_ratio
'
,
latex_label
=
'
$q$
'
,
minimum
=
0.1
,
maximum
=
1
)
priors
[
'
redshift
'
]
=
tupak
.
prior
.
Uniform
(
name
=
'
redshift
'
,
latex_label
=
'
$z$
'
,
minimum
=
0
,
maximum
=
0.5
)
priors
[
'
chirp_mass
'
]
=
tupak
.
prior
.
Uniform
(
name
=
'
chirp_mass
'
,
latex_label
=
'
$m_c$
'
,
minimum
=
13
,
maximum
=
45
)
priors
[
'
mass_ratio
'
]
=
tupak
.
prior
.
Uniform
(
name
=
'
mass_ratio
'
,
latex_label
=
'
q
'
,
minimum
=
0.1
,
maximum
=
1
)
priors
[
'
redshift
'
]
=
tupak
.
prior
.
Uniform
(
name
=
'
redshift
'
,
latex_label
=
'
$z$
'
,
minimum
=
0
,
maximum
=
0.5
)
# These parameters will not be sampled
for
key
in
[
'
a_1
'
,
'
a_2
'
,
'
tilt_1
'
,
'
tilt_2
'
,
'
phi_12
'
,
'
phi_jl
'
,
'
psi
'
,
'
ra
'
,
'
dec
'
,
'
geocent_time
'
,
'
phase
'
]:
for
key
in
[
'
a_1
'
,
'
a_2
'
,
'
tilt_1
'
,
'
tilt_2
'
,
'
phi_12
'
,
'
phi_jl
'
,
'
psi
'
,
'
ra
'
,
'
dec
'
,
'
geocent_time
'
,
'
phase
'
]:
priors
[
key
]
=
injection_parameters
[
key
]
print
(
priors
)
# Initialise GravitationalWaveTransient
likelihood
=
tupak
.
gw
.
likelihood
.
GravitationalWaveTransient
(
interferometers
=
IFOs
,
waveform_generator
=
waveform_generator
)
likelihood
=
tupak
.
gw
.
likelihood
.
GravitationalWaveTransient
(
interferometers
=
ifos
,
waveform_generator
=
waveform_generator
)
# Run sampler
result
=
tupak
.
core
.
sampler
.
run_sampler
(
likelihood
=
likelihood
,
priors
=
priors
,
sampler
=
'
dynesty
'
,
injection_parameters
=
injection_parameters
,
label
=
'
DifferentParameters
'
,
outdir
=
outdir
,
conversion_function
=
tupak
.
gw
.
conversion
.
generate_all_bbh_parameters
)
result
=
tupak
.
core
.
sampler
.
run_sampler
(
likelihood
=
likelihood
,
priors
=
priors
,
sampler
=
'
dynesty
'
,
outdir
=
outdir
,
injection_parameters
=
injection_parameters
,
label
=
'
DifferentParameters
'
,
conversion_function
=
tupak
.
gw
.
conversion
.
generate_all_bbh_parameters
)
result
.
plot_corner
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment