Skip to content
Snippets Groups Projects
Commit aa4a8ee9 authored by Virginia d'Emilio's avatar Virginia d'Emilio
Browse files

Adjusted typos, comments and conversation function after feedback.

parent 8a1d603d
No related branches found
No related tags found
1 merge request!315detailed tutorial for open data
......@@ -19,11 +19,10 @@ bilby.core.utils.setup_logger(outdir=outdir, label=label)
interferometer_names = ['H1', 'L1'] # can also include 'V1'
duration = 4 # length of data segment containing the signal
roll_off = 0.2 # smoothness of transition from no signal
# to max signal in a Turkey Window.
# to max signal in a Tukey Window.
psd_offset = -1024 # PSD is estimated using data from
# 'center_time + psd_offset' to 'center_time + psd_offset + psd_duration'
psd_duration = 100
coherence_test = False # coherence between detectors
filter_freq = None # low pass filter frequency to cut signal content above
# Nyquist frequency. The condition is 2 * filter_freq >= sampling_frequency
......@@ -46,12 +45,12 @@ interferometers = bilby.gw.detector.get_event_data(
# CHOOSE PRIOR FILE
# DEFAULT PRIOR FILES: GW150914.prior, binary_black_holes.prior,
# binary_neutron_stars.prior, comoving.txt
# binary_neutron_stars.prior
# Needs to specify path for any other prior file.
prior = bilby.gw.prior.BBHPriorDict(filename='GW150914.prior')
# GENERATE WAVEFORM
duration = None # durantion and sampling frequency will be overwritten
duration = None # duration and sampling frequency will be overwritten
# to match the ones in the interferometers.
sampling_frequency = kwargs["sample_rate"] # same at which the data is stored
start_time = 0 # set the starting time of the time array
......@@ -66,11 +65,11 @@ source_model = bilby.gw.source.lal_binary_black_hole
waveform_generator = bilby.gw.WaveformGenerator(
duration=duration, sampling_frequency=sampling_frequency,
start_time=start_time,
frequency_domain_source_model=source_model,
frequency_domain_source_model=source_model,
waveform_arguments=waveform_arguments)
# CHOOSE LIKELIHOOD FUNCTION
# Time marginalisation uses FFT.
# Time marginalisation uses FFT and can use a prior file.
# Distance marginalisation uses a look up table calculated at run time.
# Phase marginalisation is done analytically using a Bessel function.
# If prior given, used in the distance and phase marginalization.
......@@ -82,18 +81,18 @@ likelihood = bilby.gw.likelihood.GravitationalWaveTransient(
# RUN SAMPLER
# Can use log_likelihood_ratio, rather than just the log_likelihood.
# If using simulated data, pass a dictionary of injection parameters.
# A function can be specified in 'conversion_function' and
# applied to posterior to generate additional parameters.
# A function can be specified in 'conversion_function' and applied
# to posterior to generate additional parameters e.g. source-frame masses.
# Implemented Samplers:
# LIST OF AVAILABLE SAMPLERS: Run -> bilby.sampler.implemented_samplers
npoints = 512 # number of live points for the MCMC
npoints = 500 # number of live points for the MCMC
sampler = 'dynesty'
result = bilby.run_sampler(
likelihood, prior, outdir=outdir, label=label,
sampler=sampler, npoints=npoints, use_ratio=False,
injection_parameters=None, conversion_function=None,
default_priors_file=None)
injection_parameters=None,
conversion_function=bilby.gw.conversion.generate_all_bbh_parameters)
result.plot_corner()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment