Skip to content
Snippets Groups Projects
Commit c9415ae3 authored by Moritz Huebner's avatar Moritz Huebner
Browse files

Merge branch 'fix534' into 'master'

Changed bilby.core.priors to bilby.core.prior at some places in the prior documentation

Closes #534

See merge request !887
parents 09820b62 c2efc371
No related branches found
No related tags found
1 merge request!887Changed bilby.core.priors to bilby.core.prior at some places in the prior documentation
Pipeline #162670 failed
......@@ -45,7 +45,7 @@ which provides extra functionality. For example, to sample from the prior:
.. code:: python
>>> priors = bilby.core.priors.PriorDict()
>>> priors = bilby.core.prior.PriorDict()
>>> priors['a'] = bilby.prior.Uniform(minimum=0, maximum=10, name='a')
>>> priors['b'] = bilby.prior.Uniform(minimum=0, maximum=10, name='b')
>>> priors.sample()
......@@ -89,7 +89,7 @@ matrix and standard deviations, e.g.:
>>> names = ['a', 'b'] # set the parameter names
>>> mu = [0., 5.] # the means of the parameters
>>> cov = [[2., 0.7], [0.7, 3.]] # the covariance matrix
>>> mvg = bilby.core.priors.MultivariateGaussianDist(names, mus=mu, covs=cov)
>>> mvg = bilby.core.prior.MultivariateGaussianDist(names, mus=mu, covs=cov)
It is also possible to define a mixture model of multiple multivariate Gaussian modes of
different weights if required, e.g.:
......@@ -100,7 +100,7 @@ different weights if required, e.g.:
>>> mu = [[0., 5.], [2., 7.]] # the means of the parameters
>>> cov = [[[2., 0.7], [0.7, 3.]], [[1., -0.9], [-0.9, 5.]]] # the covariance matrix
>>> weights = [0.3, 0.7] # weights of each mode
>>> mvg = bilby.core.priors.MultivariateGaussianDist(names, mus=mu, covs=cov, nmodes=2, weights=weights)
>>> mvg = bilby.core.prior.MultivariateGaussianDist(names, mus=mu, covs=cov, nmodes=2, weights=weights)
The distribution can also have hard bounds on each parameter by supplying them.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment