Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bilby
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
lscsoft
bilby
Commits
dbc5427d
There was a problem fetching the pipeline summary.
Commit
dbc5427d
authored
6 years ago
by
Gregory Ashton
Browse files
Options
Downloads
Plain Diff
Merge branch 'frame_data' into 'master'
Read frame data See merge request Monash/tupak!54
parents
04f2bf5f
05faef90
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!54
Read frame data
Pipeline
#
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
tupak/detector.py
+58
-6
58 additions, 6 deletions
tupak/detector.py
tupak/utils.py
+108
-0
108 additions, 0 deletions
tupak/utils.py
with
166 additions
and
6 deletions
tupak/detector.py
+
58
−
6
View file @
dbc5427d
...
...
@@ -323,8 +323,8 @@ class Interferometer(object):
return
self
.
power_spectral_density
.
power_spectral_density_interpolated
(
self
.
frequency_array
)
def
set_data
(
self
,
sampling_frequency
,
duration
,
epoch
=
0
,
from_power_spectral_density
=
False
,
frequency_domain_strain
=
None
):
from_power_spectral_density
=
False
,
frame_file
=
None
,
frequency_domain_strain
=
None
,
channel_name
=
None
,
overwrite_psd
=
True
,
**
kwargs
):
"""
Set the interferometer frequency-domain stain and accompanying PSD values.
...
...
@@ -341,6 +341,15 @@ class Interferometer(object):
from_power_spectral_density: bool
If frequency_domain_strain not given, use IFO
'
s PSD object to
generate noise
frame_file: str
File from which to load data.
channel_name: str
Channel to read from frame.
overwrite_psd: bool
Whether to overwrite the psd in the interferometer with one calculated
from the loaded data, default=True.
kwargs: dict
Additional arguments for loading data.
"""
self
.
epoch
=
epoch
...
...
@@ -356,6 +365,14 @@ class Interferometer(object):
frequency_domain_strain
,
frequencies
=
\
self
.
power_spectral_density
.
get_noise_realisation
(
sampling_frequency
,
duration
)
elif
frame_file
is
not
None
:
logging
.
info
(
'
Reading data from frame, {}.
'
.
format
(
self
.
name
))
strain
=
tupak
.
utils
.
read_frame_file
(
frame_file
,
t1
=
epoch
,
t2
=
epoch
+
duration
,
channel
=
channel_name
,
resample
=
sampling_frequency
)
frequency_domain_strain
,
frequencies
=
tupak
.
utils
.
process_strain_data
(
strain
,
**
kwargs
)
if
overwrite_psd
:
self
.
power_spectral_density
=
PowerSpectralDensity
(
frame_file
=
frame_file
,
channel_name
=
channel_name
,
epoch
=
epoch
,
**
kwargs
)
else
:
raise
ValueError
(
"
No method to set data provided.
"
)
...
...
@@ -407,16 +424,33 @@ class Interferometer(object):
class
PowerSpectralDensity
:
def
__init__
(
self
,
asd_file
=
None
,
psd_file
=
'
aLIGO_ZERO_DET_high_P_psd.txt
'
):
def
__init__
(
self
,
asd_file
=
None
,
psd_file
=
'
aLIGO_ZERO_DET_high_P_psd.txt
'
,
frame_file
=
None
,
epoch
=
0
,
psd_duration
=
1024
,
psd_offset
=
16
,
channel_name
=
None
,
filter_freq
=
1024
,
alpha
=
0.25
,
fft_length
=
4
):
"""
Instantiate a new PowerSpectralDensity object.
Only one of the asd_file or psd_file needs to be specified.
If multiple are given, the first will be used.
FIXME: Allow reading a frame and then FFT to get PSD, use gwpy?
:param asd_file: amplitude spectral density, format
'
f h_f
'
:param psd_file: power spectral density, format
'
f h_f
'
Parameters:
asd_file: str
File containing amplitude spectral density, format
'
f h_f
'
psd_file: str
File containing power spectral density, format
'
f h_f
'
frame_file: str
Frame file to read data from.
epoch: float
Beginning of segment to analyse.
psd_duration: float
Duration of data to generate PSD from.
psd_offset: float
Offset of data from beginning of analysed segment.
channel_name: str
Name of channel to use to generate PSD.
alpha: float
Parameter for Tukey window.
fft_length: float
Number of seconds in a single fft.
"""
self
.
frequencies
=
[]
...
...
@@ -435,6 +469,24 @@ class PowerSpectralDensity:
logging
.
warning
(
"
The minimum of the provided curve is {:.2e}.
"
.
format
(
min
(
self
.
amplitude_spectral_density
)))
logging
.
warning
(
"
You may have intended to provide this as a power spectral density.
"
)
elif
frame_file
is
not
None
:
strain
=
tupak
.
utils
.
read_frame_file
(
frame_file
,
t1
=
epoch
-
psd_duration
-
psd_offset
,
t2
=
epoch
-
psd_duration
,
channel
=
channel_name
)
sampling_frequency
=
int
(
strain
.
sample_rate
.
value
)
# Low pass filter
bp
=
filter_design
.
lowpass
(
filter_freq
,
strain
.
sample_rate
)
strain
=
strain
.
filter
(
bp
,
filtfilt
=
True
)
strain
=
strain
.
crop
(
*
strain
.
span
.
contract
(
1
))
# Create and save PSDs
NFFT
=
int
(
sampling_frequency
*
fft_length
)
window
=
signal
.
windows
.
tukey
(
NFFT
,
alpha
=
alpha
)
psd
=
strain
.
psd
(
fftlength
=
fft_length
,
window
=
window
)
self
.
frequencies
=
psd
.
frequencies
self
.
power_spectral_density
=
psd
.
value
self
.
amplitude_spectral_density
=
self
.
power_spectral_density
**
0.5
self
.
interpolate_power_spectral_density
()
else
:
self
.
power_spectral_density_file
=
psd_file
self
.
import_power_spectral_density
()
...
...
This diff is collapsed.
Click to expand it.
tupak/utils.py
+
108
−
0
View file @
dbc5427d
...
...
@@ -4,6 +4,8 @@ import os
import
numpy
as
np
from
math
import
fmod
from
gwpy.timeseries
import
TimeSeries
from
gwpy.signal
import
filter_design
from
scipy
import
signal
import
argparse
# Constants
...
...
@@ -514,6 +516,112 @@ def get_open_strain_data(
return
strain
def
read_frame_file
(
file_name
,
t1
,
t2
,
channel
=
None
,
**
kwargs
):
"""
A function which accesses the open strain data
This uses `gwpy` to download the open data and then saves a cached copy for
later use
Parameters
----------
file_name: str
The name of the frame to read
t1, t2: float
The GPS time of the start and end of the data
channel: str
The name of the channel being searched for, some standard channel names are attempted
if channel is not specified or if specified channel is not found.
**kwargs:
Passed to `gwpy.timeseries.TimeSeries.fetch_open_data`
Returns
-----------
strain: gwpy.timeseries.TimeSeries
"""
loaded
=
False
if
channel
is
not
None
:
try
:
strain
=
TimeSeries
.
read
(
source
=
file_name
,
channel
=
channel
,
start
=
t1
,
end
=
t2
,
**
kwargs
)
loaded
=
True
logging
.
info
(
'
Successfully loaded {}.
'
.
format
(
channel
))
except
RuntimeError
:
logging
.
warning
(
'
Channel {} not found. Trying preset channel names
'
.
format
(
channel
))
for
channel_type
in
[
'
GDS-CALIB_STRAIN
'
,
'
DCS-CALIB_STRAIN_C01
'
,
'
DCS-CALIB_STRAIN_C02
'
]:
for
ifo_name
in
[
'
H1
'
,
'
L1
'
]:
channel
=
'
{}:{}
'
.
format
(
ifo_name
,
channel_type
)
if
loaded
:
continue
try
:
strain
=
TimeSeries
.
read
(
source
=
file_name
,
channel
=
channel
,
start
=
t1
,
end
=
t2
,
**
kwargs
)
loaded
=
True
logging
.
info
(
'
Successfully loaded {}.
'
.
format
(
channel
))
except
RuntimeError
:
None
if
loaded
:
return
strain
else
:
logging
.
warning
(
'
No data loaded.
'
)
return
None
def
process_strain_data
(
strain
,
alpha
=
0.25
,
filter_freq
=
1024
,
**
kwargs
):
"""
Helper function to obtain an Interferometer instance with appropriate
PSD and data, given an center_time.
Parameters
----------
name: str
Detector name, e.g.,
'
H1
'
.
center_time: float
GPS time of the center_time about which to perform the analysis.
Note: the analysis data is from `center_time-T/2` to `center_time+T/2`.
T: float
The total time (in seconds) to analyse. Defaults to 4s.
alpha: float
The tukey window shape parameter passed to `scipy.signal.tukey`.
psd_offset, psd_duration: float
The power spectral density (psd) is estimated using data from
`center_time+psd_offset` to `center_time+psd_offset + psd_duration`.
outdir: str
Directory where the psd files are saved
plot: bool
If true, create an ASD + strain plot
filter_freq: float
Low pass filter frequency
**kwargs:
All keyword arguments are passed to
`gwpy.timeseries.TimeSeries.fetch_open_data()`.
Returns
-------
interferometer: `tupak.detector.Interferometer`
An Interferometer instance with a PSD and frequency-domain strain data.
"""
sampling_frequency
=
int
(
strain
.
sample_rate
.
value
)
# Low pass filter
bp
=
filter_design
.
lowpass
(
filter_freq
,
strain
.
sample_rate
)
strain
=
strain
.
filter
(
bp
,
filtfilt
=
True
)
strain
=
strain
.
crop
(
*
strain
.
span
.
contract
(
1
))
time_series
=
strain
.
times
.
value
time_duration
=
time_series
[
-
1
]
-
time_series
[
0
]
# Apply Tukey window
N
=
len
(
time_series
)
strain
=
strain
*
signal
.
windows
.
tukey
(
N
,
alpha
=
alpha
)
frequency_domain_strain
,
frequencies
=
nfft
(
strain
.
value
,
sampling_frequency
)
return
frequency_domain_strain
,
frequencies
def
set_up_command_line_arguments
():
parser
=
argparse
.
ArgumentParser
(
description
=
"
Command line interface for tupak scripts
"
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment