Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bilby
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
lscsoft
bilby
Commits
e3a658a4
Commit
e3a658a4
authored
6 years ago
by
Francisco Javier Hernandez
Browse files
Options
Downloads
Patches
Plain Diff
simplified bns example and deleted not used spins
parent
44b56d17
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!171
Resolve "add neutron star merger to examples"
Pipeline
#29755
passed
6 years ago
Stage: test
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
examples/injection_examples/binary_neutron_star_example.py
+19
-45
19 additions, 45 deletions
examples/injection_examples/binary_neutron_star_example.py
tupak/gw/source.py
+8
-19
8 additions, 19 deletions
tupak/gw/source.py
with
27 additions
and
64 deletions
examples/injection_examples/binary_neutron_star_example.py
+
19
−
45
View file @
e3a658a4
...
...
@@ -22,11 +22,9 @@ np.random.seed(88170235)
# We are going to inject a binary neutron star waveform. We first establish a dictionary of parameters that
# includes all of the different waveform parameters, including masses of the two black holes (mass_1, mass_2),
# spins of both black holes (a_1,a_2) , etc. Take into account the the waveform approximants TaylorF2 and
# IMRPHenomD_NRTidal can only handle aligned spins, so the parameters tilt_1, tilt_2, phi_12, phi_jl must be
# set to 0.
injection_parameters
=
dict
(
mass_1
=
1.5
,
mass_2
=
1.3
,
a_1
=
0.0
,
a_2
=
0.0
,
tilt_1
=
0.0
,
tilt_2
=
0.0
,
phi_12
=
0.0
,
phi_jl
=
0
,
luminosity_distance
=
50.
,
iota
=
0.4
,
psi
=
2.659
,
phase
=
1.3
,
geocent_time
=
1126259642.413
,
# spins of both black holes (a_1,a_2) , etc.
injection_parameters
=
dict
(
mass_1
=
1.5
,
mass_2
=
1.3
,
a_1
=
0.0
,
a_2
=
0.0
,
luminosity_distance
=
50.
,
iota
=
0.4
,
psi
=
2.659
,
phase
=
1.3
,
geocent_time
=
1126259642.413
,
ra
=
1.375
,
dec
=-
1.2108
,
lambda1
=
400
,
lambda2
=
450
)
# Set the duration and sampling frequency of the data segment that we're going to inject the signal into. For the
...
...
@@ -49,60 +47,36 @@ hf_signal = waveform_generator.frequency_domain_strain()
# Set up interferometers. In this case we'll use three interferometers (LIGO-Hanford (H1), LIGO-Livingston (L1),
# and Virgo (V1)). These default to their design sensitivity and start at 40 Hz.
H1
=
tupak
.
gw
.
detector
.
get_empty_interferometer
(
'
H1
'
)
H1
.
minimum_frequency
=
40
H1
.
set_strain_data_from_power_spectral_density
(
sampling_frequency
=
sampling_frequency
,
duration
=
duration
,
start_time
=
start_time
)
H1
.
inject_signal
(
parameters
=
injection_parameters
,
injection_polarizations
=
hf_signal
,
waveform_generator
=
waveform_generator
)
H1
.
save_data
(
outdir
,
label
=
label
)
H1
.
plot_data
(
signal
=
H1
.
get_detector_response
(
hf_signal
,
injection_parameters
),
outdir
=
outdir
,
label
=
label
)
#second interferometer
L1
=
tupak
.
gw
.
detector
.
get_empty_interferometer
(
'
L1
'
)
L1
.
minimum_frequency
=
40
L1
.
set_strain_data_from_power_spectral_density
(
sampling_frequency
=
sampling_frequency
,
duration
=
duration
,
start_time
=
start_time
)
L1
.
inject_signal
(
parameters
=
injection_parameters
,
injection_polarizations
=
hf_signal
,
waveform_generator
=
waveform_generator
)
L1
.
save_data
(
outdir
,
label
=
label
)
L1
.
plot_data
(
signal
=
L1
.
get_detector_response
(
hf_signal
,
injection_parameters
),
outdir
=
outdir
,
label
=
label
)
#third interferometer
V1
=
tupak
.
gw
.
detector
.
get_empty_interferometer
(
'
V1
'
)
V1
.
minimum_frequency
=
40
V1
.
set_strain_data_from_power_spectral_density
(
sampling_frequency
=
sampling_frequency
,
duration
=
duration
,
start_time
=
start_time
)
V1
.
inject_signal
(
parameters
=
injection_parameters
,
injection_polarizations
=
hf_signal
,
waveform_generator
=
waveform_generator
)
V1
.
save_data
(
outdir
,
label
=
label
)
V1
.
plot_data
(
signal
=
V1
.
get_detector_response
(
hf_signal
,
injection_parameters
),
outdir
=
outdir
,
label
=
label
)
IFOs
=
np
.
array
([
H1
,
L1
,
V1
])
interferometers
=
tupak
.
gw
.
detector
.
InterferometerList
([
'
H1
'
,
'
L1
'
,
'
V1
'
])
for
interferometer
in
interferometers
:
interferometer
.
minimum_frequency
=
40
interferometers
.
set_strain_data_from_power_spectral_densities
(
sampling_frequency
=
sampling_frequency
,
duration
=
duration
,
start_time
=
start_time
)
interferometers
.
inject_signal
(
parameters
=
injection_parameters
,
waveform_generator
=
waveform_generator
)
#priors
priors
=
tupak
.
gw
.
prior
.
BBHPriorSet
()
priors
.
pop
(
'
tilt_1
'
)
priors
.
pop
(
'
tilt_2
'
)
priors
.
pop
(
'
phi_12
'
)
priors
.
pop
(
'
phi_jl
'
)
priors
[
'
lambda1
'
]
=
tupak
.
prior
.
Uniform
(
0
,
3000
,
'
$
\\
Lambda_1$
'
)
priors
[
'
lambda2
'
]
=
tupak
.
prior
.
Uniform
(
0
,
3000
,
'
$
\\
Lambda_2$
'
)
priors
[
'
mass_1
'
]
=
tupak
.
prior
.
Uniform
(
1
,
2
,
'
$m_1$
'
)
priors
[
'
mass_2
'
]
=
tupak
.
prior
.
Uniform
(
1
,
2
,
'
$m_2$
'
)
for
key
in
[
'
a_1
'
,
'
a_2
'
,
'
tilt_1
'
,
'
tilt_2
'
,
'
phi_12
'
,
'
phi_jl
'
,
'
psi
'
,
'
geocent_time
'
,
'
ra
'
,
'
dec
'
,
'
iota
'
,
'
luminosity_distance
'
,
'
phase
'
]:
for
key
in
[
'
a_1
'
,
'
a_2
'
,
'
psi
'
,
'
geocent_time
'
,
'
ra
'
,
'
dec
'
,
'
iota
'
,
'
luminosity_distance
'
,
'
phase
'
]:
priors
[
key
]
=
injection_parameters
[
key
]
# Initialise the likelihood by passing in the interferometer data (IFOs) and the waveoform generator
likelihood
=
tupak
.
gw
.
GravitationalWaveTransient
(
interferometers
=
IFO
s
,
waveform_generator
=
waveform_generator
,
likelihood
=
tupak
.
gw
.
GravitationalWaveTransient
(
interferometers
=
interferometer
s
,
waveform_generator
=
waveform_generator
,
time_marginalization
=
False
,
phase_marginalization
=
False
,
distance_marginalization
=
False
,
prior
=
priors
)
# Run sampler. In this case we're going to use the `nestle` sampler
result
=
tupak
.
run_sampler
(
likelihood
=
likelihood
,
priors
=
priors
,
sampler
=
'
nestle
'
,
npoints
=
5
00
,
result
=
tupak
.
run_sampler
(
likelihood
=
likelihood
,
priors
=
priors
,
sampler
=
'
nestle
'
,
npoints
=
10
00
,
injection_parameters
=
injection_parameters
,
outdir
=
outdir
,
label
=
label
)
result
.
plot_corner
()
...
...
This diff is collapsed.
Click to expand it.
tupak/gw/source.py
+
8
−
19
View file @
e3a658a4
...
...
@@ -254,7 +254,7 @@ def supernova_pca_model(
return
{
'
plus
'
:
h_plus
,
'
cross
'
:
h_cross
}
def
lal_binary_neutron_star
(
frequency_array
,
mass_1
,
mass_2
,
luminosity_distance
,
a_1
,
tilt_1
,
phi_12
,
a_2
,
tilt_2
,
phi_jl
,
frequency_array
,
mass_1
,
mass_2
,
luminosity_distance
,
a_1
,
a_2
,
iota
,
phase
,
ra
,
dec
,
geocent_time
,
psi
,
lambda1
,
lambda2
,
**
kwargs
):
"""
A Binary Black Hole waveform model using lalsimulation
...
...
@@ -269,17 +269,9 @@ def lal_binary_neutron_star(
luminosity_distance: float
The luminosity distance in megaparsec
a_1: float
Dimensionless primary spin magnitude
tilt_1: float
Primary tilt angle. TaylorF2 and IMRPhenomD_NRTidal only handle aligned spin, set this value to 0
phi_12: float
TaylorF2 and IMRPhenomD_NRTidal only handle aligned spin, set this value to 0
Dimensionless spin magnitude
a_2: float
Dimensionless secondary spin magnitude.
tilt_2: float
Secondary tilt angle. TaylorF2 and IMRPhenomD_NRTidal only handle aligned spin, set this value to 0
phi_jl: float
TaylorF2 and IMRPhenomD_NRTidal only handle aligned spin, set this value to 0
iota: float
Orbital inclination
phase: float
...
...
@@ -319,15 +311,12 @@ def lal_binary_neutron_star(
mass_1
=
mass_1
*
utils
.
solar_mass
mass_2
=
mass_2
*
utils
.
solar_mass
if
tilt_1
==
0
and
tilt_2
==
0
and
phi_12
==
0
and
phi_jl
==
0
:
spin_1x
=
0
spin_1y
=
0
spin_1z
=
a_1
spin_2x
=
0
spin_2y
=
0
spin_2z
=
a_2
else
:
raise
ValueError
(
'
The waveform approximants TaylorF2 and IMRPhenomD_NRTidal only support aligned spins
'
)
spin_1x
=
0
spin_1y
=
0
spin_1z
=
a_1
spin_2x
=
0
spin_2y
=
0
spin_2z
=
a_2
longitude_ascending_nodes
=
0.0
eccentricity
=
0.0
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment