Skip to content
Snippets Groups Projects
Commit ed094c27 authored by Chad Hanna's avatar Chad Hanna
Browse files

inspiral_extrinsics: improve marginalization integration scheme

parent 3ae26fb3
Branches event-aggregator
No related tags found
No related merge requests found
Pipeline #
......@@ -942,9 +942,9 @@ def margprob(Dmat):
out = []
for D in Dmat:
D = D[numpy.isfinite(D)]
step = max(int(len(D) / 32.), 1)
step = max(int(len(D) / 2048.), 1)
D = D[::step]
if len(D) == 33:
if len(D) == 2049:
out.append(step * scipy.integrate.romb(numpy.exp(-D**2/2.)))
else:
out.append(step * scipy.integrate.simps(numpy.exp(-D**2/2.)))
......@@ -1075,7 +1075,7 @@ class TimePhaseSNR(object):
self.margsky = margsky
if self.tree_data is None:
time, phase, deff = TimePhaseSNR.tile()
time, phase, deff = TimePhaseSNR.tile(verbose = verbose)
self.tree_data = self.dtdphideffpoints(time, phase, deff, self.slices)
# produce KD trees for all the combinations. NOTE we slice
......@@ -1110,7 +1110,7 @@ class TimePhaseSNR(object):
# analysis. This will use 8GB of RAM and keep
# a box pretty busy.
for points in chunker(self.tree_data[:,slcs], 1000):
Dmat = self.KDTree[combo].query(points, k=num_points, distance_upper_bound = 3.5, n_jobs=-1)[0]
Dmat = self.KDTree[combo].query(points, k=num_points, distance_upper_bound = 20, n_jobs=-1)[0]
marg.extend(margprob(Dmat))
self.margsky[combo] = numpy.array(marg, dtype="float32")
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment