Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
pygwinc
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
30
Issues
30
List
Boards
Labels
Service Desk
Milestones
Iterations
Merge Requests
2
Merge Requests
2
Requirements
Requirements
List
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Test Cases
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issue
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
gwinc
pygwinc
Commits
95bfb2a8
Commit
95bfb2a8
authored
Aug 13, 2018
by
Christopher Wipf
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
aLIGO.yaml: updated parameters from matgwinc IFOModel
(addresses
#23
)
parent
070abb18
Pipeline
#27982
passed with stages
in 56 seconds
Changes
1
Pipelines
2
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
46 additions
and
62 deletions
+46
-62
gwinc/ifo/aLIGO.yaml
gwinc/ifo/aLIGO.yaml
+46
-62
No files found.
gwinc/ifo/aLIGO.yaml
View file @
95bfb2a8
...
...
@@ -38,6 +38,18 @@ Infrastructure:
polarizability
:
7.8e-31
# m^3
TCS
:
# The presumably dominant effect of a thermal lens in the ITMs is an increased
# mode mismatch into the SRC, and thus an increased effective loss of the SRC.
# The increase is estimated by calculating the round-trip loss S in the SRC as
# 1-S = |<Psi|exp(i*phi)|Psi>|^2, where
# |Psi> is the beam hitting the ITM and
# phi = P_coat*phi_coat + P_subs*phi_subs
# with phi_coat & phi_subs the specific lensing profiles
# and P_coat & P_subst the power absorbed in coating and substrate
#
# This expression can be expanded to 2nd order and is given by
# S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2
# s_cc, s_cs and s_ss were calculated analytically by Phil Willems (4/2007)
s_cc
:
7.024
# Watt^-2
s_cs
:
7.321
# Watt^-2
s_ss
:
7.631
# Watt^-2
...
...
@@ -56,6 +68,7 @@ TCS:
Seismic
:
Site
:
'
LHO'
# LHO or LLO (only used for Newtonian noise)
# darmSeiSusFile: 'seismic.mat' # .mat file containing predictions for darm displacement
KneeFrequency
:
10
# Hz; freq where 'flat' noise rolls off
LowFrequencyLevel
:
1e-9
# m/rtHz; seismic noise level below f_knee
Gamma
:
0.8
# abruptness of change at f_knee
...
...
@@ -68,20 +81,20 @@ Seismic:
Suspension
:
Type
:
'
Quad'
FiberType
:
'
Roun
d'
FiberType
:
'
Tapere
d'
BreakStress
:
750e6
# Pa; ref. K. Strain
Temp
:
290
VHCoupling
:
theta
:
1e-3
# vertical-horizontal x-coupling
#
VHCoupling:
# theta: 1e-3 # vertical-horizontal x-coupling (computed in precompIFO)
Silica
:
Rho
:
2
200
# Kg/m^3;
Rho
:
2
.2e3
# Kg/m^3;
C
:
772
# J/Kg/K;
K
:
1.38
# W/m/kg;
Alpha
:
3.9e-7
# 1/K;
dlnEdT
:
1.52e-4
# (1/K), dlnE/dT
Phi
:
4.1e-10
# from G Harry e-mail to NAR 27April06 dimensionless units
Y
:
7
2e9
# Pa; Youngs Modulus
Y
:
7
.2e10
# Pa; Youngs Modulus
Dissdepth
:
1.5e-2
# from G Harry e-mail to NAR 27April06
C70Steel
:
...
...
@@ -102,18 +115,18 @@ Suspension:
Phi
:
1e-4
Y
:
187e9
# ref
---- http://design.caltech.edu/Research/MEMS/siliconprop
.html
# all properties should be for T ~ 20 K
# ref
http://www.ioffe.ru/SVA/NSM/Semicond/Si/index
.html
# all properties should be for T ~
1
20 K
Silicon
:
Rho
:
23
30
# Kg/m^3; density
C
:
772
# J/kg/K heat capacity
K
:
4980
# W/m/K thermal conductivity
Alpha
:
1e-
9
# 1/K thermal expansion coeff
Rho
:
23
29
# Kg/m^3; density
C
:
300
# J/kg/K heat capacity
K
:
700
# W/m/K thermal conductivity
Alpha
:
1e-
10
# 1/K thermal expansion coeff
# from Gysin, et. al. PRB (2004) E(T): E0 - B*T*exp(-T0/T)
# E0: 167.5e9 Pa T0: 317 K B: 15.8e6 Pa/K
dlnEdT
:
2.5e-10
# (1/K) dlnE/dT T=
20K
dlnEdT
:
-2e-5
# (1/K) dlnE/dT T=1
20K
Phi
:
2e-9
# Nawrodt (2010) loss angle 1/Q
Y
:
15
0e9
# Pa Youngs Modulus
Y
:
15
5.8e9
# Pa Youngs Modulus
Dissdepth
:
1.5e-3
# 10x smaller surface loss depth (Nawrodt (2010))
# Note stage numbering: mirror is at beginning of stack, not end
...
...
@@ -124,6 +137,9 @@ Suspension:
Stage
:
# Stage1
-
Mass
:
39.6
# kg; current numbers May 2006 NAR
# length adjusted for d = 10mm and d_bend = 4mm
# (since 602mm is the CoM separation, and d_bend is accounted for
# in suspQuad, so including it here would double count)
Length
:
0.59
# m
Dilution
:
.nan
#
K
:
.nan
# N/m; vertical spring constant
...
...
@@ -164,7 +180,11 @@ Suspension:
Fiber
:
Radius
:
205e-6
# m
Blade
:
4300e-6
# for tapered fibers
# EndRadius is tuned to cancel thermo-elastic noise (delta_h in suspQuad)
# EndLength is tuned to match bounce mode frequency
EndRadius
:
400e-6
# m; nominal 400um
EndLength
:
45e-3
# m; nominal 20mm
## Optic Material -------------------------------------------------------
Materials
:
...
...
@@ -174,14 +194,15 @@ Materials:
## Dielectric coating material parameters----------------------------------
Coating
:
## high index material: tantala
Yhighn
:
1
40e9
Sigmahighn
:
0.2
3
Yhighn
:
1
24e9
# LMA (Granata at LVC) 2017 (was 140)
Sigmahighn
:
0.2
8
# LMA (Granata at LVC) 2017 (was 0.23)
CVhighn
:
2.1e6
# Crooks et al, Fejer et al
Alphahighn
:
3.6e-6
# 3.6e-6 Fejer et al, 5e-6 from Braginsky
Betahighn
:
1.4e-5
# dn/dT, value Gretarrson (G070161)
ThermalDiffusivityhighn
:
33
# Fejer et al
Phihighn
:
3.6e-4
# tantala mechanical loss
Indexhighn
:
2.06539
Phihighn
:
3.6e-4
# loss angle at 100Hz (Gras 2018)
Phihighn_slope
:
0.1
## low index material: silica
Ylown
:
72e9
...
...
@@ -190,11 +211,13 @@ Materials:
Alphalown
:
5.1e-7
# Fejer et al
Betalown
:
8e-6
# dn/dT, (ref. 14)
ThermalDiffusivitylown
:
1.38
# Fejer et al
Philown
:
5.0e-5
# silica mechanical loss
Indexlown
:
1.45
Philown
:
5.0e-5
# loss angle at 100Hz (was 4.0e-5)
Philown_slope
:
0.4
## Substrate Material parameters--------------------------------------------
Substrate
:
Temp
:
295
c2
:
7.6e-12
# Coeff of freq depend. term for bulk mechanical loss, 7.15e-12 for Sup2
MechanicalLossExponent
:
0.77
# Exponent for freq dependence of silica loss, 0.822 for Sup2
Alphas
:
5.2e-12
# Surface loss limit (ref. 12)
...
...
@@ -215,25 +238,23 @@ Laser:
Optics
:
Type
:
'
SignalRecycled'
PhotoDetectorEfficiency
:
0.9
# photo-detector quantum efficiency
Loss
:
37.5e-6
# average per mirror power loss
Loss
:
40e-6
# average per mirror power loss
BSLoss
:
0.5e-3
# power loss near beamsplitter
coupling
:
1.0
# mismatch btwn arms & SRC modes; used to
#SubstrateAbsorption: 0.5e-4 # 1/m; bulk absorption coef (ref. 2)
SubstrateAbsorption
:
0.3e-4
# 1/m; 0.3 ppm/cm for Hereaus
# calculate an effective r_srm
SubstrateAbsorption
:
0.5e-4
# 1/m; bulk absorption coef (ref. 2)
pcrit
:
10
# W; tolerable heating power (factor 1 ATC)
Quadrature
:
dc
:
1.5707963
# pi/2 # demod/detection/homodyne phase
ITM
:
BeamRadius
:
0.055
# m, 1/e^2 power radius
# BeamRadius: 0.055 # m, 1/e^2 power radius, now in precompIFO
Transmittance
:
0.014
CoatingThicknessLown
:
0.308
CoatingThicknessCap
:
0.5
CoatingAbsorption
:
0.5e-6
SubstrateAbsorption
:
0.3e-4
# 1/m, 0.3 ppm/cm for Hereaus
ETM
:
BeamRadius
:
0.062
# m, 1/e^2 power radius
# BeamRadius: 0.062 # m, 1/e^2 power radius, now in precompIFO
Transmittance
:
5e-6
CoatingThicknessLown
:
0.27
CoatingThicknessCap
:
0.5
...
...
@@ -247,40 +268,3 @@ Optics:
Curvature
:
# ROC
ITM
:
1970
ETM
:
2192
## Squeezer Parameters------------------------------------------------------
# Define the squeezing you want:
# None: ignore the squeezer settings
# Freq Independent: nothing special (no filter cavties)
# Freq Dependent = applies the specified filter cavites
# Optimal = find the best squeeze angle, assuming no output filtering
# OptimalOptimal = optimal squeeze angle, assuming optimal readout phase
Squeezer
:
Type
:
'
None'
AmplitudedB
:
10
# SQZ amplitude [dB]
InjectionLoss
:
0.05
# power loss to sqz
SQZAngle
:
0
# SQZ phase [radians]
# Parameters for frequency dependent squeezing
FilterCavity
:
fdetune
:
-14.5
# detuning [Hz]
L
:
100
# cavity length
Ti
:
0.12e-3
# input mirror trasmission [Power]
Te
:
0
# end mirror trasmission
Lrt
:
100e-6
# round-trip loss in the cavity
Rot
:
0
# phase rotation after cavity
## Variational Output Parameters--------------------------------------------
# Define the output filter cavity chain
# None = ignore the output filter settings
# Chain = apply filter cavity chain
# Optimal = find the best readout phase
OutputFilter
:
Type
:
'
None'
FilterCavity
:
fdetune
:
-30
# detuning [Hz]
L
:
4000
# cavity length
Ti
:
10e-3
# input mirror trasmission [Power]
Te
:
0
# end mirror trasmission
Lrt
:
100e-6
# round-trip loss in the cavity
Rot
:
0
# phase rotation after cavity
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment