Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
pygwinc
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Jameson Rollins
pygwinc
Commits
bf1a28c2
Commit
bf1a28c2
authored
6 years ago
by
Evan Hall
Browse files
Options
Downloads
Patches
Plain Diff
Half-populated yml for Cosmic Explorer (cryo)
parent
1bb62fda
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
gwinc/ifo/CEcryo.yaml
+350
-0
350 additions, 0 deletions
gwinc/ifo/CEcryo.yaml
with
350 additions
and
0 deletions
gwinc/ifo/CEcryo.yaml
0 → 100644
+
350
−
0
View file @
bf1a28c2
# GWINC CE interferometer parameters (cryogenic)
# parameters for quad pendulum suspension updated 3rd May 2006, NAR
# References:
# LIGO-T000012-00-D
# * Differentiate between silica and sapphire substrate absorption
# * Change ribbon suspension aspect ratio
# * Change pendulum frequency
# * References:
# * 1. Electro-Optic Handbook, Waynant & Ediger (McGraw-Hill: 1993)
# * 2. LIGO/GEO data/experience
# * 3. Suspension reference design, LIGO-T000012-00
# * 4. Quartz Glass for Optics Data and Properties, Heraeus data sheet,
# * numbers for suprasil
# * 5. Y.S. Touloukian (ed), Thermophysical Properties of Matter
# * (IFI/Plenum,1970)
# * 6. Marvin J. Weber (ed) CRC Handbook of laser science and technology,
# * Vol 4, Pt 2
# * 7. R.S. Krishnan et al.,Thermal Expansion of Crystals, Pergamon Press
# * 8. P. Klocek, Handbook of infrared and optical materials, Marcel Decker,
# * 1991
# * 9. Rai Weiss, electronic log from 5/10/2006
# * 10. Wikipedia online encyclopedia, 2006
# * 11. D.K. Davies, The Generation and Dissipation of Static Charge on
# * dielectrics in a Vacuum, page 29
# * 12. Gretarsson & Harry, Gretarsson thesis
# * 13. Fejer
# * 14. Braginsky
Constants
:
Temp
:
295
# K; Temperature of the Vacuum
Infrastructure
:
Length
:
39950
# m; whoa
ResidualGas
:
pressure
:
4.0e-7
# Pa
mass
:
3.35e-27
# kg, Mass of H_2 (ref. 10)
polarizability
:
0.81e-30
# m^3 (H_2, DOI: 10.1116/1.1479360)
TCS
:
## Parameter describing thermal lensing
# The presumably dominant effect of a thermal lens in the ITMs is an increased
# mode mismatch into the SRC, and thus an increased effective loss of the SRC.
# This increase is estimated by calculating the round-trip loss S in the SRC as
# 1-S = |<Psi|exp(i*phi)|Psi>|^2, where
# |Psi> is the beam hitting the ITM and
# phi = P_coat*phi_coat + P_subs*phi_subs
# with phi_coat & phi__subs the specific lensing profiles
# and P_coat & P_subst the power absorbed in coating and substrate
#
# This expression can be expanded to 2nd order and is given by
# S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2
# s_cc, s_cs and s_ss where calculated analytically by Phil Wilems (4/2007)
s_cc
:
7.024
# Watt^-2
s_cs
:
7.321
# Watt^-2
s_ss
:
7.631
# Watt^-2
# The hardest part to model is how efficient the TCS system is in
# compensating this loss. Thus as a simple Ansatz we define the
# TCS efficiency TCSeff as the reduction in effective power that produces
# a phase distortion. E.g. TCSeff=0.99 means that the compensated distortion
# of 1 Watt absorbed is eqivalent to the uncompensated distortion of 10mWatt.
# The above formula thus becomes:
# S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2 * (1-TCSeff)^2
#
# To avoid iterative calculation we define TCS.SCRloss = S as an input
# and calculate TCSeff as an output.
# TCS.SRCloss is incorporated as an additional loss in the SRC
SRCloss
:
0.00
Seismic
:
## Seismic and Gravity Gradient Parameters
Site
:
'
LHO'
# LHO or LLO (only used for Newtonian noise)
KneeFrequency
:
10
# Hz; freq where 'flat' noise rolls off
LowFrequencyLevel
:
1e-9
# m/rtHz; seismic noise level below f_knee
Gamma
:
.8
# abruptness of change at f_knee
Rho
:
1.8e3
# kg/m^3; density of the ground nearby
Beta
:
1
# quiet times beta = 0.35-0.60; noisy times beta = 0.15-1.4
Omicron
:
10
# Feedforward cancellation factor
#darmSeiSusFile: 'CryogenicLIGO/Sensitivity/GWINC/seismic.mat'
Suspension
:
Type
:
'
BQuad'
# Suspension fiber temperatures [TOP UIM PUM TST]
Temp
:
-
300.0
-
300.0
-
300.0
-
123.0
VHCoupling
:
theta
:
1e-3
# vertical-horizontal x-coupling
FiberType
:
1
# 0 = round, 1 = ribbons
# For Ribbon suspension
Ribbon
:
Thickness
:
115e-6
# m
Width
:
1150e-6
# m
Fiber
:
Radius
:
205e-6
# m
BreakStress
:
750e6
# Pa; ref. K. Strain
# Note stage numbering: mirror is at beginning of stack, not end
# these mass numbers are from v8 of the Voyager design doc
Stage
:
# Load saved file with otpimized mass. Masses are optimized for longitudinal isolation assuming the PUM has springs
#susmat = loadmat('CryogenicLIGO/QuadModel/quad_optimized_masses_for_PUM_with_springs.mat')
-
Mass
:
200.0
# kg; susmat['testmass_mass'][0,0]
Length
:
0.4105
# m
Dilution
:
.nan
K
:
.nan
WireRadius
:
.nan
Blade
:
.nan
# blade thickness
NWires
:
4
-
Mass
:
65.9
# kg; susmat['PUMmass'][0,0]
Length
:
0.4105
# m
Dilution
:
106.0
K
:
5200.0
# N/m; vertical spring constant
WireRadius
:
310e-6
Blade
:
4200e-6
NWires
:
4
-
Mass
:
87.6
# kg; susmat['UIMmass'][0,0]
Length
:
0.4105
# m
Dilution
:
80.0
K
:
3900.0
# N/m; vertical spring constant
WireRadius
:
350e-6
Blade
:
4600e-6
NWires
:
4
-
Mass
:
116.5
# kg; susmat['topmass_mass'][0,0]
Length
:
0.4105
# m
Dilution
:
87.0
K
:
3400.0
# N/m; vertical spring constant
WireRadius
:
520e-6
Blade
:
4300e-6
NWires
:
2
Silicon
:
# http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html
# all properties should be for T ~ 120 K
Rho
:
2329.0
# Kg/m^3 density
C
:
300.0
# J/kg/K heat capacity
K
:
700.0
# W/m/K thermal conductivity
Alpha
:
1e-10
# 1/K thermal expansion coeff
# from Gysin, et. al. PRB (2004) E(T) = E0 - B*T*exp(-T0/T)
# E0 = 167.5e9 Pa T0 = 317 K B = 15.8e6 Pa/K
dlnEdT
:
-2e-5
# (1/K) dlnE/dT T = 120K
Phi
:
2e-9
# Nawrodt (2010) loss angle 1/Q
Y
:
155.8e9
# Pa Youngs Modulus
Dissdepth
:
1.5e-3
# 10x smaller surface loss depth (Nawrodt (2010))
FiberType
:
1
# 0 = round, 1 = ribbons
Silica
:
Rho
:
2200.0
# Kg/m^3
C
:
772.0
# J/Kg/K
K
:
1.38
# W/m/kg
Alpha
:
3.9e-7
# 1/K
dlnEdT
:
1.52e-4
# (1/K), dlnE/dT
Phi
:
4.1e-10
# from G Harry e-mail to NAR 27April06
Y
:
72e9
# Pa; Youngs Modulus
Dissdepth
:
1.5e-2
# from G Harry e-mail to NAR 27April06
C70Steel
:
Rho
:
7800.0
C
:
486.0
K
:
49.0
Alpha
:
12e-6
dlnEdT
:
-2.5e-4
Phi
:
2e-4
Y
:
212e9
# measured by MB for one set of wires
MaragingSteel
:
Rho
:
7800.0
C
:
460.0
K
:
20.0
Alpha
:
11e-6
dlnEdT
:
0.0
Phi
:
1.0e-4
Y
:
187e9
# consistent with measured blade spring constants NAR
Materials
:
## Amorphous Silicon / Silica coating
Coating
:
# high index material: a-Si
# https://wiki.ligo.org/OPT/AmorphousSilicon
Yhighn
:
80e9
Sigmahighn
:
0.22
CVhighn
:
7.776e5
# volume-specific heat capacity (J/K/m^3); 345.6*2250 http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.96.055902
Alphahighn
:
1e-9
# zero crossing at 123 K
Betahighn
:
1.4e-4
# dn/dT
ThermalDiffusivityhighn
:
1
# W/m/K (this is a misnomer, meant to be thermal conductivity not diffusivity)
Phihighn
:
3e-5
# just a guess (depends on prep)
Indexhighn
:
3.5
# low index material: silica
# https://wiki.ligo.org/OPT/SilicaCoatingProp
Ylown
:
72e9
# Young's modulus (Pa)
Sigmalown
:
0.17
# Poisson's ratio
CVlown
:
1.6412e6
# volume-specific heat capacity (J/K/m^3); Crooks et al, Fejer et al
Alphalown
:
5.1e-7
# Fejer et al
Betalown
:
8e-6
# dn/dT, (ref. 14)
ThermalDiffusivitylown
:
1.38
# Fejer et al (this is a misnomer, meant to be thermal conductivity not diffusivity)
Philown
:
1e-4
# ?
# calculated for 123 K and 2000 nm following
# Ghosh, et al (1994): http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=317500
Indexlown
:
1.436
# calculated (RXA)
## Substrate Material parameters
# Silicon @ 120K (http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html)
Substrate
:
# phi_sub = c2 * f^(MechLossExp)
c2
:
3e-13
# Coeff of freq dep. term for bulk loss (Lam & Douglass, 1981)
MechanicalLossExponent
:
1
# Exponent for freq dependence of silicon loss
Alphas
:
5.2e-12
# Surface loss limit ???
MirrorY
:
155.8e9
# N/m^2; Youngs modulus (ioffe) -- what about anisotropy??
MirrorSigma
:
0.27
# kg/m^3; Poisson ratio (ioffe) -- what about anisotropy??
MassDensity
:
2329
# kg/m^3; (ioffe)
MassAlpha
:
1e-9
# 1/K; CTE = 0 @ 120 K
MassCM
:
300
# J/kg/K; specific heat (ioffe @ 120K)
MassKappa
:
700
# W/(m*K); thermal conductivity (ioffe @ 120)
RefractiveIndex
:
3.5
# 3.38 * (1 + 4e-5 * T) (ioffe)
dndT
:
1e-4
# ~123K & 1900 nm : http://arxiv.org/abs/physics/0606168
Temp
:
123
# mirror temperature [K]
## parameters for semiconductor optics
isSemiConductor
:
True
# we are doing semiconductor optics
CarrierDensity
:
1e19
# 1/m^3; carrier density for phosphorous-doped silicon
ElectronDiffusion
:
9.7e-3
# m^2/s; electron diffusion coefficient for silicon at 120 K
HoleDiffusion
:
3.5e-3
# m^2/s; hole diffusion coefficient for silicon at 120 K
ElectronEffMass
:
9.747e-31
# kg; effective mass of each electron 1.07*m_e
HoleEffMass
:
8.016e-31
# kg; effective mass of each hole 0.88*m_e
ElectronIndexGamma
:
-8.8e-28
# m**3; dependence of index of refraction on electron carrier density
HoleIndexGamma
:
-1.02e-27
# m**3; dependence of index of refraction on hole carrier density
MassRadius
:
0.225
# m; 45 cm mCZ silicon
MassThickness
:
0.55
Laser
:
Wavelength
:
1550e-9
# m
Power
:
400
# W zz['x'][0][0]
Optics
:
Type
:
'
SignalRecycled'
# calculate arm cavity spot sizes
# L = ifo.Infrastructure.Length
# w1,w2,junk = SpotSizes(1 - L / ifo.Optics.Curvature.ITM,
# 1 - L / ifo.Optics.Curvature.ETM,
# L, ifo.Laser.Wavelength)
# load quantum PSO
# qopt_mat = sorted(os.listdir('CryogenicLIGO/Sensitivity/GWINC/optRuns'))[-1]
# zz = loadmat('CryogenicLIGO/Sensitivity/GWINC/optRuns/' + qopt_mat)
ITM
:
SubstrateAbsorption
:
1e-3
# 1/m; 10 ppm/cm for MCZ Si
BeamRadius
:
0.16
# m; 1/e^2 power radius w1
CoatingAbsorption
:
1e-6
# absorption of ITM
Transmittance
:
1.2436875e-3
# zz['x'][0][3]
#CoatingThicknessLown: 0.308
#CoatingThicknessCap: 0.5
#itm = loadmat('CryogenicLIGO/Sensitivity/coating/aSi/Data/ITM_layers_151221_2237.mat')
CoatLayerOpticalThickness
:
#itm['TNout']['L'][0][0].T
-
0.01054715
-
0.28787195
-
0.10285996
-
0.40016914
-
0.09876197
-
0.39463506
-
0.1054613
-
0.37612136
-
0.12181482
-
0.35883931
-
0.13570767
-
0.3867382
-
0.08814237
ETM
:
BeamRadius
:
0.16
# m; 1/e^2 power radius w2
Transmittance
:
5e-6
# Transmittance of ETM
#CoatingThicknessLown: 0.27
#CoatingThicknessCap: 0.5
#etm = loadmat('CryogenicLIGO/Sensitivity/coating/aSi/Data/ETM_layers_151221_2150.mat')
CoatLayerOpticalThickness
:
#etm['TNout']['L'][0][0].T
-
0.01000241
-
0.27121433
-
0.16417485
-
0.33598991
-
0.16123195
-
0.33587683
-
0.16150012
-
0.33620725
-
0.16381275
-
0.33382231
-
0.16041712
-
0.33544017
-
0.1664314
-
0.33324722
-
0.16319734
-
0.33497111
-
0.15838689
PRM
:
Transmittance
:
0.03
SRM
:
CavityLength
:
55
# m; ITM to SRM distance
Transmittance
:
0.02
# zz['x'][0][4]
#ifo.Optics.SRM.Tunephase = 0.23; % SRM tuning, 795 Hz narrowband
Tunephase
:
0.0
# SRM tuning [radians]
PhotoDetectorEfficiency
:
0.95
# photo-detector quantum efficiency
Loss
:
10e-6
# average per mirror power loss
# factor of 4 for 1064 -> 2000
BSLoss
:
0.5e-3
# power loss near beamsplitter
coupling
:
1.0
# mismatch btwn arms & SRC modes; used to calculate an effective r_srm
Curvature
:
ITM
:
30000
# RoC of ITM
ETM
:
30000
# RoC of ETM
SubstrateAbsorption
:
0.3e-4
# 1/m; 0.3 ppm/cm for Hereaus
pcrit
:
10
# W; tolerable heating power (factor 1 ATC)
Quadrature
:
dc
:
1.556827
# homoDyne phase [radians] zz['x'][0][5]
Squeezer
:
# Define the squeezing you want:
# None = ignore the squeezer settings
# Freq Independent = nothing special (no filter cavties)
# Freq Dependent = applies the specified filter cavites
# Optimal = find the best squeeze angle, assuming no output filtering
# OptimalOptimal = optimal squeeze angle, assuming optimal readout phase
Type
:
'
Freq
Dependent'
AmplitudedB
:
10
# SQZ amplitude [dB]
InjectionLoss
:
0.05
# power loss to sqz
SQZAngle
:
0
# SQZ phase [radians]
# Parameters for frequency dependent squeezing
FilterCavity
:
fdetune
:
-36.44897
# detuning [Hz] zz['x'][0][1]
L
:
300
# cavity length [m]
Ti
:
0.00090274
# input mirror trasmission [Power] zz['x'][0][2]
Te
:
0e-6
# end mirror trasmission
Lrt
:
10e-6
# round-trip loss in the cavity
Rot
:
0
# phase rotation after cavity
## Variational Output Parameters
# Define the output filter cavity chain
# None = ignore the output filter settings
# Chain = apply filter cavity chain
# Optimal = find the best readout phase
OutputFilter
:
Type
:
'
None'
FilterCavity
:
fdetune
:
-30
# detuning [Hz]
L
:
4000
# cavity length
Ti
:
10e-3
# input mirror trasmission [Power]
Te
:
0
# end mirror trasmission
Lrt
:
100e-6
# round-trip loss in the cavity
Rot
:
0
# phase rotation after cavity
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment