Skip to content
Snippets Groups Projects
Commit bf1a28c2 authored by Evan Hall's avatar Evan Hall
Browse files

Half-populated yml for Cosmic Explorer (cryo)

parent 1bb62fda
No related branches found
No related tags found
No related merge requests found
# GWINC CE interferometer parameters (cryogenic)
# parameters for quad pendulum suspension updated 3rd May 2006, NAR
# References:
# LIGO-T000012-00-D
# * Differentiate between silica and sapphire substrate absorption
# * Change ribbon suspension aspect ratio
# * Change pendulum frequency
# * References:
# * 1. Electro-Optic Handbook, Waynant & Ediger (McGraw-Hill: 1993)
# * 2. LIGO/GEO data/experience
# * 3. Suspension reference design, LIGO-T000012-00
# * 4. Quartz Glass for Optics Data and Properties, Heraeus data sheet,
# * numbers for suprasil
# * 5. Y.S. Touloukian (ed), Thermophysical Properties of Matter
# * (IFI/Plenum,1970)
# * 6. Marvin J. Weber (ed) CRC Handbook of laser science and technology,
# * Vol 4, Pt 2
# * 7. R.S. Krishnan et al.,Thermal Expansion of Crystals, Pergamon Press
# * 8. P. Klocek, Handbook of infrared and optical materials, Marcel Decker,
# * 1991
# * 9. Rai Weiss, electronic log from 5/10/2006
# * 10. Wikipedia online encyclopedia, 2006
# * 11. D.K. Davies, The Generation and Dissipation of Static Charge on
# * dielectrics in a Vacuum, page 29
# * 12. Gretarsson & Harry, Gretarsson thesis
# * 13. Fejer
# * 14. Braginsky
Constants:
Temp: 295 # K; Temperature of the Vacuum
Infrastructure:
Length: 39950 # m; whoa
ResidualGas:
pressure: 4.0e-7 # Pa
mass: 3.35e-27 # kg, Mass of H_2 (ref. 10)
polarizability: 0.81e-30 # m^3 (H_2, DOI: 10.1116/1.1479360)
TCS:
## Parameter describing thermal lensing
# The presumably dominant effect of a thermal lens in the ITMs is an increased
# mode mismatch into the SRC, and thus an increased effective loss of the SRC.
# This increase is estimated by calculating the round-trip loss S in the SRC as
# 1-S = |<Psi|exp(i*phi)|Psi>|^2, where
# |Psi> is the beam hitting the ITM and
# phi = P_coat*phi_coat + P_subs*phi_subs
# with phi_coat & phi__subs the specific lensing profiles
# and P_coat & P_subst the power absorbed in coating and substrate
#
# This expression can be expanded to 2nd order and is given by
# S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2
# s_cc, s_cs and s_ss where calculated analytically by Phil Wilems (4/2007)
s_cc: 7.024 # Watt^-2
s_cs: 7.321 # Watt^-2
s_ss: 7.631 # Watt^-2
# The hardest part to model is how efficient the TCS system is in
# compensating this loss. Thus as a simple Ansatz we define the
# TCS efficiency TCSeff as the reduction in effective power that produces
# a phase distortion. E.g. TCSeff=0.99 means that the compensated distortion
# of 1 Watt absorbed is eqivalent to the uncompensated distortion of 10mWatt.
# The above formula thus becomes:
# S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2 * (1-TCSeff)^2
#
# To avoid iterative calculation we define TCS.SCRloss = S as an input
# and calculate TCSeff as an output.
# TCS.SRCloss is incorporated as an additional loss in the SRC
SRCloss: 0.00
Seismic:
## Seismic and Gravity Gradient Parameters
Site: 'LHO' # LHO or LLO (only used for Newtonian noise)
KneeFrequency: 10 # Hz; freq where 'flat' noise rolls off
LowFrequencyLevel: 1e-9 # m/rtHz; seismic noise level below f_knee
Gamma: .8 # abruptness of change at f_knee
Rho: 1.8e3 # kg/m^3; density of the ground nearby
Beta: 1 # quiet times beta = 0.35-0.60; noisy times beta = 0.15-1.4
Omicron: 10 # Feedforward cancellation factor
#darmSeiSusFile: 'CryogenicLIGO/Sensitivity/GWINC/seismic.mat'
Suspension:
Type: 'BQuad'
# Suspension fiber temperatures [TOP UIM PUM TST]
Temp:
- 300.0
- 300.0
- 300.0
- 123.0
VHCoupling:
theta: 1e-3 # vertical-horizontal x-coupling
FiberType: 1 # 0 = round, 1 = ribbons
# For Ribbon suspension
Ribbon:
Thickness: 115e-6 # m
Width: 1150e-6 # m
Fiber:
Radius: 205e-6 # m
BreakStress: 750e6 # Pa; ref. K. Strain
# Note stage numbering: mirror is at beginning of stack, not end
# these mass numbers are from v8 of the Voyager design doc
Stage:
# Load saved file with otpimized mass. Masses are optimized for longitudinal isolation assuming the PUM has springs
#susmat = loadmat('CryogenicLIGO/QuadModel/quad_optimized_masses_for_PUM_with_springs.mat')
- Mass: 200.0 # kg; susmat['testmass_mass'][0,0]
Length: 0.4105 # m
Dilution: .nan
K: .nan
WireRadius: .nan
Blade: .nan # blade thickness
NWires: 4
- Mass: 65.9 # kg; susmat['PUMmass'][0,0]
Length: 0.4105 # m
Dilution: 106.0
K: 5200.0 # N/m; vertical spring constant
WireRadius: 310e-6
Blade: 4200e-6
NWires: 4
- Mass: 87.6 # kg; susmat['UIMmass'][0,0]
Length: 0.4105 # m
Dilution: 80.0
K: 3900.0 # N/m; vertical spring constant
WireRadius: 350e-6
Blade: 4600e-6
NWires: 4
- Mass: 116.5 # kg; susmat['topmass_mass'][0,0]
Length: 0.4105 # m
Dilution: 87.0
K: 3400.0 # N/m; vertical spring constant
WireRadius: 520e-6
Blade: 4300e-6
NWires: 2
Silicon:
# http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html
# all properties should be for T ~ 120 K
Rho: 2329.0 # Kg/m^3 density
C: 300.0 # J/kg/K heat capacity
K: 700.0 # W/m/K thermal conductivity
Alpha: 1e-10 # 1/K thermal expansion coeff
# from Gysin, et. al. PRB (2004) E(T) = E0 - B*T*exp(-T0/T)
# E0 = 167.5e9 Pa T0 = 317 K B = 15.8e6 Pa/K
dlnEdT: -2e-5 # (1/K) dlnE/dT T = 120K
Phi: 2e-9 # Nawrodt (2010) loss angle 1/Q
Y: 155.8e9 # Pa Youngs Modulus
Dissdepth: 1.5e-3 # 10x smaller surface loss depth (Nawrodt (2010))
FiberType: 1 # 0 = round, 1 = ribbons
Silica:
Rho: 2200.0 # Kg/m^3
C: 772.0 # J/Kg/K
K: 1.38 # W/m/kg
Alpha: 3.9e-7 # 1/K
dlnEdT: 1.52e-4 # (1/K), dlnE/dT
Phi: 4.1e-10 # from G Harry e-mail to NAR 27April06
Y: 72e9 # Pa; Youngs Modulus
Dissdepth: 1.5e-2 # from G Harry e-mail to NAR 27April06
C70Steel:
Rho: 7800.0
C: 486.0
K: 49.0
Alpha: 12e-6
dlnEdT: -2.5e-4
Phi: 2e-4
Y: 212e9 # measured by MB for one set of wires
MaragingSteel:
Rho: 7800.0
C: 460.0
K: 20.0
Alpha: 11e-6
dlnEdT: 0.0
Phi: 1.0e-4
Y: 187e9
# consistent with measured blade spring constants NAR
Materials:
## Amorphous Silicon / Silica coating
Coating:
# high index material: a-Si
# https://wiki.ligo.org/OPT/AmorphousSilicon
Yhighn: 80e9
Sigmahighn: 0.22
CVhighn: 7.776e5 # volume-specific heat capacity (J/K/m^3); 345.6*2250 http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.96.055902
Alphahighn: 1e-9 # zero crossing at 123 K
Betahighn: 1.4e-4 # dn/dT
ThermalDiffusivityhighn: 1 # W/m/K (this is a misnomer, meant to be thermal conductivity not diffusivity)
Phihighn: 3e-5 # just a guess (depends on prep)
Indexhighn: 3.5
# low index material: silica
# https://wiki.ligo.org/OPT/SilicaCoatingProp
Ylown: 72e9 # Young's modulus (Pa)
Sigmalown: 0.17 # Poisson's ratio
CVlown: 1.6412e6 # volume-specific heat capacity (J/K/m^3); Crooks et al, Fejer et al
Alphalown: 5.1e-7 # Fejer et al
Betalown: 8e-6 # dn/dT, (ref. 14)
ThermalDiffusivitylown: 1.38 # Fejer et al (this is a misnomer, meant to be thermal conductivity not diffusivity)
Philown: 1e-4 # ?
# calculated for 123 K and 2000 nm following
# Ghosh, et al (1994): http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=317500
Indexlown: 1.436 # calculated (RXA)
## Substrate Material parameters
# Silicon @ 120K (http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html)
Substrate:
# phi_sub = c2 * f^(MechLossExp)
c2: 3e-13 # Coeff of freq dep. term for bulk loss (Lam & Douglass, 1981)
MechanicalLossExponent: 1 # Exponent for freq dependence of silicon loss
Alphas: 5.2e-12 # Surface loss limit ???
MirrorY: 155.8e9 # N/m^2; Youngs modulus (ioffe) -- what about anisotropy??
MirrorSigma: 0.27 # kg/m^3; Poisson ratio (ioffe) -- what about anisotropy??
MassDensity: 2329 # kg/m^3; (ioffe)
MassAlpha: 1e-9 # 1/K; CTE = 0 @ 120 K
MassCM: 300 # J/kg/K; specific heat (ioffe @ 120K)
MassKappa: 700 # W/(m*K); thermal conductivity (ioffe @ 120)
RefractiveIndex: 3.5 # 3.38 * (1 + 4e-5 * T) (ioffe)
dndT: 1e-4 # ~123K & 1900 nm : http://arxiv.org/abs/physics/0606168
Temp: 123 # mirror temperature [K]
## parameters for semiconductor optics
isSemiConductor: True # we are doing semiconductor optics
CarrierDensity: 1e19 # 1/m^3; carrier density for phosphorous-doped silicon
ElectronDiffusion: 9.7e-3 # m^2/s; electron diffusion coefficient for silicon at 120 K
HoleDiffusion: 3.5e-3 # m^2/s; hole diffusion coefficient for silicon at 120 K
ElectronEffMass: 9.747e-31 # kg; effective mass of each electron 1.07*m_e
HoleEffMass: 8.016e-31 # kg; effective mass of each hole 0.88*m_e
ElectronIndexGamma: -8.8e-28 # m**3; dependence of index of refraction on electron carrier density
HoleIndexGamma: -1.02e-27 # m**3; dependence of index of refraction on hole carrier density
MassRadius: 0.225 # m; 45 cm mCZ silicon
MassThickness: 0.55
Laser:
Wavelength: 1550e-9 # m
Power: 400 # W zz['x'][0][0]
Optics:
Type: 'SignalRecycled'
# calculate arm cavity spot sizes
# L = ifo.Infrastructure.Length
# w1,w2,junk = SpotSizes(1 - L / ifo.Optics.Curvature.ITM,
# 1 - L / ifo.Optics.Curvature.ETM,
# L, ifo.Laser.Wavelength)
# load quantum PSO
# qopt_mat = sorted(os.listdir('CryogenicLIGO/Sensitivity/GWINC/optRuns'))[-1]
# zz = loadmat('CryogenicLIGO/Sensitivity/GWINC/optRuns/' + qopt_mat)
ITM:
SubstrateAbsorption: 1e-3 # 1/m; 10 ppm/cm for MCZ Si
BeamRadius: 0.16 # m; 1/e^2 power radius w1
CoatingAbsorption: 1e-6 # absorption of ITM
Transmittance: 1.2436875e-3 # zz['x'][0][3]
#CoatingThicknessLown: 0.308
#CoatingThicknessCap: 0.5
#itm = loadmat('CryogenicLIGO/Sensitivity/coating/aSi/Data/ITM_layers_151221_2237.mat')
CoatLayerOpticalThickness: #itm['TNout']['L'][0][0].T
- 0.01054715
- 0.28787195
- 0.10285996
- 0.40016914
- 0.09876197
- 0.39463506
- 0.1054613
- 0.37612136
- 0.12181482
- 0.35883931
- 0.13570767
- 0.3867382
- 0.08814237
ETM:
BeamRadius: 0.16 # m; 1/e^2 power radius w2
Transmittance: 5e-6 # Transmittance of ETM
#CoatingThicknessLown: 0.27
#CoatingThicknessCap: 0.5
#etm = loadmat('CryogenicLIGO/Sensitivity/coating/aSi/Data/ETM_layers_151221_2150.mat')
CoatLayerOpticalThickness: #etm['TNout']['L'][0][0].T
- 0.01000241
- 0.27121433
- 0.16417485
- 0.33598991
- 0.16123195
- 0.33587683
- 0.16150012
- 0.33620725
- 0.16381275
- 0.33382231
- 0.16041712
- 0.33544017
- 0.1664314
- 0.33324722
- 0.16319734
- 0.33497111
- 0.15838689
PRM:
Transmittance: 0.03
SRM:
CavityLength: 55 # m; ITM to SRM distance
Transmittance: 0.02 # zz['x'][0][4]
#ifo.Optics.SRM.Tunephase = 0.23; % SRM tuning, 795 Hz narrowband
Tunephase: 0.0 # SRM tuning [radians]
PhotoDetectorEfficiency: 0.95 # photo-detector quantum efficiency
Loss: 10e-6 # average per mirror power loss
# factor of 4 for 1064 -> 2000
BSLoss: 0.5e-3 # power loss near beamsplitter
coupling: 1.0 # mismatch btwn arms & SRC modes; used to calculate an effective r_srm
Curvature:
ITM: 30000 # RoC of ITM
ETM: 30000 # RoC of ETM
SubstrateAbsorption: 0.3e-4 # 1/m; 0.3 ppm/cm for Hereaus
pcrit: 10 # W; tolerable heating power (factor 1 ATC)
Quadrature:
dc: 1.556827 # homoDyne phase [radians] zz['x'][0][5]
Squeezer:
# Define the squeezing you want:
# None = ignore the squeezer settings
# Freq Independent = nothing special (no filter cavties)
# Freq Dependent = applies the specified filter cavites
# Optimal = find the best squeeze angle, assuming no output filtering
# OptimalOptimal = optimal squeeze angle, assuming optimal readout phase
Type: 'Freq Dependent'
AmplitudedB: 10 # SQZ amplitude [dB]
InjectionLoss: 0.05 # power loss to sqz
SQZAngle: 0 # SQZ phase [radians]
# Parameters for frequency dependent squeezing
FilterCavity:
fdetune: -36.44897 # detuning [Hz] zz['x'][0][1]
L: 300 # cavity length [m]
Ti: 0.00090274 # input mirror trasmission [Power] zz['x'][0][2]
Te: 0e-6 # end mirror trasmission
Lrt: 10e-6 # round-trip loss in the cavity
Rot: 0 # phase rotation after cavity
## Variational Output Parameters
# Define the output filter cavity chain
# None = ignore the output filter settings
# Chain = apply filter cavity chain
# Optimal = find the best readout phase
OutputFilter:
Type: 'None'
FilterCavity:
fdetune: -30 # detuning [Hz]
L: 4000 # cavity length
Ti: 10e-3 # input mirror trasmission [Power]
Te: 0 # end mirror trasmission
Lrt: 100e-6 # round-trip loss in the cavity
Rot: 0 # phase rotation after cavity
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment